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Abstract

Our study demonstrates the power of contextual embeddings for predicting the per-
formance of novel heterogeneous treatments. Our proposed framework leverages four
key benefits of machine learning: prediction, enhanced causal estimation, estimation
of heterogeneous effects, and generative capability. To test our framework, we exploit
a targeted marketing setting in which 34 email promotions were sent to 1.3 million
customers over a 45-day period. Using these emails as treatments, we start by esti-
mating the doubly robust scores of customer-level purchase amounts to serve as our
target variable. We incorporate customer-level demographics and contextual embed-
dings, which capture the context of the latent states, to estimate the response function
of these emails. Using a series of leave-one-out exercises, we show how our approach
can accurately extrapolate the average performance, heterogeneous performance, and
recommended targeting policies of novel promotions. We find that our framework re-
covers 78.6% of the variation of the aggregate treatment effects, an average of 65.36%
of the variation in the heterogeneous treatment effects of each novel treatment, and
matches 82% of policy recommendations made using the true signals. We conclude
our study with an example of leveraging Generative AI to create novel treatments and
then evaluate their performance with our framework.
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1 Introduction

“So how is it, then, that something like ChatGPT can get as far as it does with language?

The basic answer, I think, is that language is at a fundamental level somehow simpler than it

seems. And this means that ChatGPT is successfully able to “capture the essence” of human

language and the thinking behind it.”

- Stephen Wolfram, 2023.1

Machine learning (ML) algorithms are the leading empirical approach to prediction and

pattern recognition across many domains. In addition, causal ML methods now play an

increasingly important role in providing pathways to credible causal inference, under the as-

sumption of selection on observables, by allowing for data-driven model selection over both

confounders and effect modifiers (Chernozhukov et al., 2024). In the latter case, they have

also shown tremendous promise in detecting and quantifying heterogeneity in treatment

effects. Most recently, machine learning techniques associated with deep neural nets and

transformer architectures have been used to capture, in a sparse yet complete way, the key

meaning and content in prose, irrespective of length or complexity. The contextual infor-

mation inferred from language can then be used in a host of down-stream tasks, collectively

known as generative Artificial Intelligence (GenAI).

In this paper, we integrate these four key strengths of machine learning — prediction,

causal inference, estimation of heterogeneous effects, and generative capabilities — to pre-

dict the performance of new marketing creatives (treatments). Our application, which builds

upon and extends Ellickson et al. (2023), compares the actual and predicted performance of

targeted email promotions designed to elicit incremental purchases. The contextual embed-

dings that drive modern large language models enable us to obtain counterfactual predictions.

Importantly, these embeddings are situated on a common linguistic manifold, allowing for

extrapolation. Combined with doubly robust ML techniques, we estimate unbiased signals

1https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/
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of counterfactual performance based on the past performance of several comparable creatives

(i.e., email promotions in our context), which is key to predicting the success of new cre-

atives. Moving beyond average prediction, we further leverage recent advances in the use

of sorted group average treatment effects to identify treatment effect heterogeneity within

each creative, an important input to designing targeting heuristics. Classification analysis

then ties the heterogeneity to observable demographic variables.2 Finally, we employ policy-

learning approaches to leverage the connection to demographics in the service of identifying

better targeting policies. At each step, out-of-sample performance is demonstrated via our

collection of observed creatives via a suite of leave-one-out exercises.3

We begin by proposing a framework for conducting both inference and prediction on

latent, contextual treatments characterized by heterogeneous textual information. Building

upon Egami et al. (2022), we introduce four key assumptions required for causal prediction,

along with a strategy for constructing predictions, identifying heterogeneity, and assigning

treatments. We emphasize the central role of doubly robust scores of relative outcome

performance in serving as the focal building block of three downstream post-processing

tasks.4 First, their predicted analogs can be averaged to characterize the average performance

of new treatments. Second, their sorted values can be grouped to identify heterogeneity in

the response to these treatments and further connected to the demographics that index it.

Third, the doubly robust scores can facilitate policy-learning-based approaches to targeting

new treatments, bypassing the need for new experiments.

After developing our causal prediction framework, we then turn to the task of dimension

reduction, highlighting the key role that embeddings play in capturing the content of complex

treatments in marketing. We discuss the benefits and trade-offs of alternative encoders and

2In our context, demographic variables relate to both the demographic characteristics of customers and
the recency-frequency-monetary variables that capture customers’ interactions with the firm.

3We choose this approach to ensure that our estimation of the response surface does not include any
direct information about the focal treatment (or creative), thus offering a rigorous benchmark for comparing
performance in the development of novel treatments.

4Doubly robust scores, the individual-level estimates coming from a double machine learning (DML)
estimator, are also called doubly robust signals or individual-treatment effects (ITEs).
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the importance of sample-splitting to avoid over-fitting. The use of pre-trained encoders can

do so automatically. Turning to the task of prediction, namely the mapping from embeddings

to doubly robust outcome signals, we formalize the requirements for predictive accuracy and

discuss procedures for additional dimension reduction in settings with low power. We target

a predictive response surface whose features can then be exploited for downstream targeting.

We demonstrate the capability and flexibility of our framework on a set of 34 email

promotions delivered to a target population of 1.3 million customers. Using the estima-

tion procedure proposed in Ellickson et al. (2023), we first calculate doubly robust scores

for 33 emails. Each score denotes the customer-specific increase in purchase amount that

each email generates compared to a fixed baseline email. We then employ a sorted group

average treatment effect (GATES) approach (Chernozhukov et al., 2017, 2018) to document

significant heterogeneity in the response to these individual emails.5 In our out-of-sample

tests of predictive performance for emails that were not used to train the model, we rely on

these doubly robust signals and GATES constructs to capture the ground truth. Through

a sequence of out-of-sample exercises (leave-one-email-out), we showcase our framework’s

capability to predict not only the average performance of a new email but also to discern

heterogeneity in its underlying causal effect, which strongly correlates with the ground truth

provided by the scores. For example, examining the average performance (ATE) of novel

treatments, we find that we are only unable to accurately predict the performance of 2 out

of 33 emails and our approach captures 78.6% of the variation in estimated ATEs. Further,

exploring the heterogenous effects of the novel treatments using the GATEs, we find that our

approach captures an average 65.36% of the variation in the heterogenous effects of the novel

treatments. This heterogeneity, which is further tied to demographic variables capturing the

engagement and revenue potential of the target customer population, is the key requirement

for successful targeted marketing. We then demonstrate how the same predictive outputs

of our framework can be used for policy learning to make such targeting operational. Once

5Though not explicitly referred to as GATES in Ascarza (2018), the use of sorted treatment effects in
this marketing application is crucial for determining to whom treatment should be administered.
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again, out-of-sample evaluation demonstrates that working with the counterfactual predic-

tions retains much of the signal of the underlying ground truth.

In our last empirical exercise, we circle back to the potential of generative AI by evaluating

ChatGPT’s ability to both ideate new creatives and predict their performance. Similar to

recent studies, we find that ChatGPT excels at creation but struggles at evaluation (Girotra

et al., 2023; da Costa et al., 2023), which may reflect its tendency to hallucinate responses

(Ji et al., 2023). Recent research suggests that fine tuning a large language model with

additional data may even exacerbate the hallucination problem, which may make the new

model even more unreliable (Gekhman et al., 2024). In our application, ChatGPT is able to

suggest new email creatives that have varying levels of performance; however, it fails to rank

the relative performance of these creatives in an informative manner. Thus, we advocate

for ChatGPT to generate a panel of new creatives and then use our approach, based on

firm-level data, in describing the response surface of treatment characteristics to validate

the performance of the new creatives.

Our paper resides in the nexus of two streams of literature: leveraging machine learn-

ing for better policy outcomes and using large language models/contextual embeddings in

business contexts. The use of machine learning for marketing applications has exploded in

recent times. While we do not provide an exhaustive list of such studies, we highlight a few

examples where machine learning has been utilized in this capacity. Ascarza (2018) uses

machine learning to assess the retention rate of individuals in order to best target the use

of promotions. Yoganarasimhan et al. (2020) leverages an experiment to find the optimal

length of a free trial for a software product. Dubé and Misra (2023) focuses on finding the

profit maximizing price through an experiment. Further studies have looked at develop-

ment of email creatives, most closely related to our empirical setting, using machine learning

(Balakrishnan and Parekh, 2014; Jaidka et al., 2018; Nguyen et al., 0).

The prior studies have either focused on low-dimensional treatment objects (mostly bi-

nary), or codification of treatment characteristics into an easier to manipulate space. With
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the creation of large language models and transformer architecture, the text associated with

treatments can either be operationalized directly through embeddings or through fine-tuning

of existing large language models. For the former case, Bajari et al. (2023) use text embed-

dings to control for product information as a means to better assess the impact of price.

Dew (2023) uses PCA-reduced image embeddings for the purposes of developing new visual

images. Reisenbichler et al. (2022) is one of the first papers to use business outcomes in fine-

tuning a large language model with the goal of enhancing SEO performance. Most closely

resembling our study is Angelopoulos et al. (2024), which proposes fine-tuning a large lan-

guage model to generate new email creatives and evaluating their performance across a large

collection of RCTs. In contrast, our paper focuses on combining the effectiveness of con-

textual embeddings to capture high-dimensional information with customer demographics

and treatment outcomes to extrapolate the individual-level performance of novel heteroge-

neous treatments. Consequently, we can not only predict the average performance of new

treatments or creatives, as demonstrated in Angelopoulos et al. (2024), but also assess het-

erogeneous responses and provide targeting guidelines.

The rest of the paper is organized as follows. In Section 2 we propose a causal inference

framework with latent treatments, which guides researchers to choose machine learning al-

gorithms for generating latent treatments, and conduct predictive tasks for effects of new

treatments. We also highlight the usefulness of the contextual embeddings for our applica-

tion. Section 3 describes the institutional context and construction of the dataset. Section 4

contains our results across three stages of analysis: the aggregate, average response to novel

treatments, the heterogeneous response to novel treatments, and the comparability in policy

performance of novel treatments. Further, in Section 5 we present an empirical exercise that

connects ChatGPT ideation with our framework to vet the performance of novel treatments.

Section 6 concludes.
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2 Causal Inference with Latent Contextual Treatments

A key challenge in using unstructured data, regardless of form, is operationalizing it into a

useful construct for analysis. The easiest and most common method of encoding unstruc-

tured text is a categorical encoder: the simple assignment of each treatment to a unique

integer identifier. The benefit of this approach lies in allowing the researcher to work under

a standard multivalued treatment framework that permits causal inference tasks. However,

categorical encoders do not allow researchers to predict (extrapolate) a new counterfactual

scenario that was not observed in the data (i.e., novel treatments).6 The ability to extrap-

olate to new treatments requires the encoding of information contained in the unstructured

treatments into a latent space that allows for a universal representation of the treatment’s

characteristics, both observed and hypothetical. Recent progress in machine learning algo-

rithms now allows researchers to encode unstructured data at scale. As a result, researchers

have started to conduct causal inference on encoded treatments.

Egami et al. (2022) and Fong and Grimmer (2023) provide useful guidance on text as

treatments, framing the problem as one of causal inference on latent treatments. Our ap-

proach builds on these concepts, further formalizing and extending them within the potential

outcomes causal framework to counterfactual prediction tasks. The core idea of our approach

is to convert the observed unstructured treatments to structured contextual treatments and

define the treatment response surface as a function of these contextual factors. We then

predict the effect of a new unstructured treatment through its structured contextual corre-

spondence.

In this section, we begin by formalizing the task of using latent treatments in a causal

framework. Next, we link these latent treatments to causal inference by employing doubly

robust signals of their causal effects. Last, we highlight how latent treatments and esti-

mated doubly robust scores can be used to predict the effectiveness of novel heterogeneous

6This problem is similar to adding a new product to a standard (characteristics-based) discrete choice
demand system. If that new product includes a feature not observed in the current product set, prediction
of its counterfactual performance is intractable.
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treatments in contextual space.

2.1 Causal Framework with Latent Treatments

We now introduce a framework that formalizes this practice. We also discuss the require-

ments for choosing the associated encoding function, and provide concrete guidance for

doing so. In presenting the framework, we use textual information as our main example

of unstructured treatments to illustrate the main concepts. However, these concepts apply

to any unstructured information that can now be encoded and projected onto a common,

low-dimensional manifold (e.g., images, video, and audio).

We start from the premise that many unstructured data, such as texts, reflect an under-

lying structured contextual meaning, which we refer to as its context. To fix ideas, consider

the set of all possible (English) text documents that currently exist, denoted as ∆, and the

set of all possible contextual meanings expressed by these texts, denoted as Γ. A human

language system defines a mapping from texts to contexts, H : ∆ → Γ. Notably, the el-

ements in ∆, texts, are generally ultra-high-dimensional objects, while the elements in Γ,

contexts, are, ideally, dimension-reduced objects capturing the same base meaning. The

scope for dimension reduction arises from the apparent “structural sparsity” of language,

which was alluded to in the opening quote of this paper. The reduced dimensions repre-

sent linguistically irrelevant information that is second order for capturing the underlying

meaning.

Typically, when researchers are conducting causal inference with unstructured treat-

ments, the possible set of treatments is restricted to their focal domain. For instance, in our

email application, the set of treatments are all possible email subject lines sent to customers

of an online women’s retailer. We can then define a set of all possible treatments under con-

sideration as T ⊂ ∆, such that all attention can be focused on the mapping H on T , which

we denote as HT in what follows.7 Using the above notation, we can proceed to developing

7T should be interpreted as being the set of both the treatments observed in the sample, and the treat-
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our approach for conducting causal inference on unstructured treatments under the potential

outcome framework. We start with two assumptions that characterize treatments and their

associated outcomes.

Assumption 1. For all individuals ω and any j, k ∈ T , if j = k, then HT (j) = HT (k).

Assumption 2. For all individuals ω and all k ∈ T , potential outcomes

Y (k, ω) = Y (HT (k), ω).

Assumption 1 requires that, in the focal domain (T ), the mapping (HT ) from observed

unstructured treatments to the corresponding contexts is a one/many-to-one mapping for

all individuals ω. Substantively, this requires that all individuals agree on the underlying

meaning of a given textual input (though how they react to that text can differ). For exam-

ple, this assumption rules out ambiguity in the meaning of email subject lines considered in

Ellickson et al. (2023), which in their context, appears mild. Note that this is a component

of the stable unit treatment value assumption (SUTVA), which asserts that there are no

different versions of each treatment (Imbens and Rubin, 2015). If an observed unstructured

treatment can be mapped to different contexts, then there are hidden variations of this treat-

ment, which lead to SUTVA violations. Assumption 2 states that the observed unstructured

treatments affect outcomes only through contextual information. Fong and Grimmer (2023)

impose a similar assumption on their “codebook function”, which requires either the absence

of unmeasured latent treatments (confounders) or that any such unmeasured constructs are

independent of either the measured treatments or their associated outcomes. Intuitively, this

essentially requires that contextual meaning is a sufficient statistic for the complete text in

question.

We now state two well-known assumptions that ensure the identification of the causal

effects of our latent contextual treatments. To allow for counterfactual prediction over out-

of-sample treatments, we further introduce an object S ⊂ T , which is the set of all treatments

ments not in sample, but of interest to the analyst.
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observed in the data. Counterfactual prediction (extrapolation) is conducted for some treat-

ment l ∈ T \ S, i.e., new cases that fall outside the sample.

Assumption 3 (Unconfounded Assignment). For all individuals ω and all k ∈ S ⊂ T ,

Y (k, ω) ⊥⊥ D(ω) | Wω, where D(·) is a treatment assignment function, whose range is S,

and Wω is a set of (possibly high-dimensional) observable variables attached to individual ω.

Assumption 4 (Sufficient Overlap). For all k ∈ S, we have 0 < Pr(D = k|W ) < 1.

Assumption 3 states that treatment assignment is orthogonal to potential outcomes, con-

ditional on the observed demographic featuresW of the target population. Stated differently,

if we consider individuals with the same values of observed features, namely W = w, then

treatment variation among these individuals, D|W = w, is generated as if by a condition-

ally randomized control trial. In classical targeted marketing settings, this assumption is

guaranteed by design (even if the assignment rules are, in fact, deterministic), so long as the

researcher observes the same features used by firms in their targeting decisions. Assump-

tion 4 further requires that there is sufficient random variation in D at each value w in the

support of W (all treatments have some probability of being delivered). Substantively, this

requires some form of randomization, either explicit or by chance. In the case of an RCT,

overlap is also guaranteed by design. More generally, it often requires some form of residual

randomization (after controlling for W ) that was not explicitly built in to the intended as-

signment mechanism (e.g., due to targeting budget constraints). Under these conditions, we

can then construct a contrast between any treatments j and k in S for all w in the support

of W .

Assumptions 3 and 4 provide the identification conditions required for researchers to

conduct causal inference within the observed treatment set S. In contrast, Assumptions 1

and 2 further allow for causal inference on contextual treatments in the same manner in which

one estimates the causal effects of observed multivalued treatments in S under Assumptions
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3 and 4. To be more precise, when researchers are predicting counterfactual outcomes (or

treatment effects), the assignment rule of observed treatments (D) in sample S, act as a

sampler on HT (S) in the contextual space — there is a response surface of outcomes defined

on HT (T ), and the assignment rule D(·) samples points in HT (S) ⊂ HT (T ). The ability to

locate the position of the response surface at the sampled points in HT (S) is guaranteed by

Assumption 2. Combining these sampled points on the response surface with functional form

assumptions, we can interpolate/extrapolate the response surface to a new treatment value

that is not in S. Based on the sampling argument, we can see that if Assumption 1 fails, e.g.,

there are multiple contexts corresponding to the new treatment, we cannot determine which

point in the context space to use for interpolation/extrapolation, yielding an identification

problem. As we have seen in the classic causal inference problems, we cannot identify causal

effects when SUTVA is violated unless we impose additional assumptions or redefine the

target causal estimands. For a visual depiction of the idea of counterfactual predictions

(i.e., how we translate the response surface from our causal estimates into the predicted

performance of novel treatments), please see Figure 1.

*** Insert Figure 1 about here ***

2.2 Causal Inference Based on Doubly Robust Scores

Satisfying Assumptions 1 – 4 allows us to conduct causal inference in the contextual treat-

ment space. We describe that process here. Following Heckman and Vytlacil (2007), we

define the following distinct treatment effects (causal estimands):

1. Individual treatment effect (ITE): τjk(ω) ≡ Y (j, ω)−Y (k, ω) = Y (HT (j), ω)−Y (HT (k), ω).

2. Average treatment effect (ATE): τjk ≡ Eω[Y (j, ω) − Y (k, ω)] = Eω[Y (HT (j), ω) −

Y (HT (k), ω)].

3. Conditional average treatment effect (CATE): τjk(x) ≡ Eω[Y (j, ω) − Y (k, ω)|X =
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x] = Eω[Y (HT (j), ω) − Y (HT (k), ω)|X = x], where X is a low-dimensional vector of

observable features.

Note that, in these definitions, the latter equalities are implied by Assumption 2 (po-

tential outcomes of unstructured treatments are the same as those of corresponding latent

contextual treatments). Further, note that the above treatment-effect constructs are each

defined pairwise. In practice, researchers typically select a baseline treatment (e.g., treat-

ment k) and compute the effects of each treatment compared to the common baseline k.

Depending on the context, that baseline treatment can either be a true control condition or

simply a convenient benchmark (e.g., a “business as usual” intervention).8

Although they are generally not identified econometrically, the ITE estimands serve as

the fundamental building blocks for the other (aggregate) constructs. For example, the pop-

ulation expectation of the ITEs yields the familiar average treatment effect (ATE), while con-

ditional expectations yield various conditional average treatment effect constructs (CATEs)

that can be used as the basis for targeting.9 Sample analogs of the ITEs are provided by

doubly robust scores, which similarly serve as building blocks for the sample analogs of ATE

and CATE constructs, as well as other features of the causal response surface. For example,

a simple average of the scores yields a consistent estimate of ATE. Similarly, we can project

the estimated ITE signals on various components or aggregates of X to obtain consistent es-

timates of many familiar CATE estimands. In particular, the ATE conditional on individual

features of X ⊂ W , corresponds to the most familiar CATE construct.

Having discussed how the ITE signals are used to construct the various aggregates defined

above, we turn now to estimating the ITEs themselves (i.e., constructing the ITE signals).

To do so, we follow Robins and Rotnitzky (1995) and Chernozhukov et al. (2018) in em-

ploying doubly robust scores as our estimates of ITEs (henceforth, we use the term doubly

8By focusing on pairwise contrasts, it is not necessary to compute all the pairwise effects, which can
reduce the computational burden.

9A less familiar construct is a marginal treatment effect for a treatment that itself is a bundle of features,
k, where k is a d-component vector (k1, . . . , kd) of individual treatment components. Expectations that
condition on the presence of particular components (or sets of components) yield various marginal average
treatment effects (or features of the underlying response surface).
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robust scores to represent ITE signals). This allows for both the use of flexible machine

learning (ML) algorithms in performing estimation, and conducting valid inference over its

outputs. The use of ML estimators is important here because researchers may not know the

exact functional form of the assignment rule and/or the structure of the potential outcome

models that characterize the response to treatments. Variable selection, in particular, may

be required for each, as well as a data-driven approach to function approximation. Both in-

troduce potential regularization biases that must then be addressed econometrically. Doubly

robust scores provide a guard against this bias (see discussion below).

Following Chernozhukov et al. (2018), the doubly robust scores for individual ω take the

following form:

τjk,dr(ω) = µ(j,Wω)− µ(k,Wω)

+
Dj(ω)

e(j,Wω)
[Yω − µ(j,Wω)]−

Dk(ω)

e(k,Wω)
[Yω − µ(k,Wω)],

(1)

where µ(k,W ) is the outcome model for treatment k, Dk(ω) = 1[Dω = k], e(k,W ) is the

propensity score model for treatment k, and Yω is the observed outcome of individual ω.

To obtain the estimated doubly robust scores, τ̂jk,dr, we proceed in two steps. First, we

randomly partition the data into approximately equal-sized folds, indexed by i ∈ {1, · · · , I}.

For each fold i = 1, · · · , I, we compute ML estimators µ̂[i] and ê[i] of µ and e, leaving out

the i-th fold of data. Second, we plug the estimated µ̂ and ê corresponding to each ob-

servation into the doubly robust score formula, after which we can conduct corresponding

downstream post-processing to obtain the estimator for the target estimand. Chernozhukov

et al. (2018) establish that the doubly robust scores satisfy a Neyman orthogonality con-

dition that ensures that they do not suffer from the regularization bias arising from ML

estimation (provided sufficiently high-quality ML estimators are used to construct the nui-

sance functions). Further, the use of a sample-splitting procedure controls over-fitting bias.

In practice, researchers may also need to trim the estimated propensity scores, ê, in order to

reduce the disproportionate impact of extreme propensity score weights.
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2.3 Predictive Inference on Contextual Space

Turning now to our task of predicting counterfactual outcomes at some out-of-sample treat-

ment values, e.g., l ∈ T \ S, the estimation procedure proceeds as follows (assuming k is the

baseline treatment):

1. Obtain the estimated doubly robust scores τ̂jk,dr for every j ∈ S \ {k} observed in S;

2. Obtain the estimated contextual mapping ĤT (·);

3. Project τ̂jk,dr on ĤT (·) and W using a candidate predictive model GT (HT ,W ), yielding

the estimated model response surface ĜT (·, ·);

4. Predict τ̂lk,dr = ĜT (ĤT (l),W ), as a fitted value from the estimated function recovered

in step 3.

The basic workflow of the prediction exercise is as follows:

Unstructured treatment l
encoder ĤT (·)−−−−−−−−→ context of l

predictive model ĜT (·,·)−−−−−−−−−−−−−→ (C)ATE of l.

Compared with typical causal estimation tasks carried out on the observed treatments in

the sample, there are several additional steps for causal prediction. First, we must es-

timate/recover the mapping HT that provides a low-dimensional characterization of the

context. Second, we must specify a predictive model GT that maps from HT (T ) to the

doubly robust scores. Third, we must estimate GT as a function of the recovered contexts

HT (S), yielding the response surface. In the following subsections, we discuss our proposed

estimation strategies for HT and GT .

2.3.1 Estimation of HT

Recall that HT is the dimension-reduced contextual space that captures the content of the

treatments. There are many ways to estimate HT (i.e. carry out the dimension reduction
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step). A general requirement for constructing ĤT is the use of sample-splitting: employing

a different sample for dimension reduction than the one subsequently used for causal esti-

mation. This is necessary to prevent over-fitting. Additionally, when selecting an estimator

for HT , the ideal requirement is that the estimator ĤT be “close to” the true HT , i.e., that

||HT − ĤT ||∞ is small. However, this high-level condition is difficult to motivate in prac-

tice, given the dearth of formal statistical investigations into the properties of estimators

for unstructured data. We thus impose a weaker requirement that can guide researchers in

selecting the best ĤT from a collection of different estimator options in a practical manner.

This weaker requirement is, for any j, k, l ∈ T , we have

||HT (j)−HT (k)|| < ||HT (j)−HT (l)|| ⇔ ||ĤT (j)− ĤT (k)|| < ||ĤT (j)− ĤT (l)||,

where || · || is the Euclidean norm. The weaker condition states that the estimator ĤT

should preserve the order of the distance between different treatments in the contextual

space, which is a requirement for the quality of an encoder.10 For predictive purpose, this

requirement is sufficient. To see why, consider a partition-based predictive technique that

leverage local information to form a prediction.11 When the order of distance between any

pair of contexts is preserved by the encoder ĤT (·), then the set of neighbors is also preserved

for any given context, which is essential to the downstream partition-based predictive algo-

rithm’s performance. In addition, practitioners often standardize ĤT (T ) before moving to

predictive modeling — in this case, the distance-order-preserving condition is equivalent to a

distance-preserving condition or a consistency condition.12 When choosing among encoders,

we should pick the one that satisfies this requirement as closely as possible.

10This condition is weaker than strong assumptions such as requiring that the encoder be a consistent
estimator, a property for which we currently have little guidance or formal results in most cases.

11Many popular ML algorithms fall into this category, including random forests, (boosted) trees, and Lasso
regressions with spline bases.

12Whether it is a distance-preserving condition or a consistency condition depends on how researchers
standardize the estimated contexts. For example, if they standardize ĤT (T ) on T (the focal domain), it is
a distance-preserving condition; if they standardize it on Γ (full context space), it is equivalent to applying
a consistent ĤT (·) followed by standardization.
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A final concern is that, in many cases, the encoded information from ĤT may still be a

high-dimensional (but structured) object, particularly relative to the effective sample size of

the problem at hand. For scalability or predictive performance (such that unimportant, but

noisy dimensions do not negatively impact prediction), researchers may further apply some

additional dimension reduction technique to the candidate embedding space. For example, in

the context of image encoding, Dew (2023) employs Principal Components Analysis (PCA)

after VGG-19 image encoding.13 Ideally, this practice should not lead to violation of the

distance-order-preserving assumption.

For our application, we look to embedding models as a means to capture the context

of a given unstructured treatment and project it into a latent space.14 Embedding models

are a Generative-AI construct that outputs a dense, numerical vector that represents a

text object. The embeddings sit on a latent space comprising a manifold in which similar

objects are positioned closer to one another, while objects that differ are positioned further

away. Thus, the embedding of a particular text should reside closer to embeddings of other

texts with similar content, context, and meaning. A key benefit of this structure is that

embeddings reside on a single, common manifold that can be further used for a variety of

tasks. Another benefit is that embedding models are generally trained on a collection of

tasks that are unrelated to the causal prediction problem at hand, thereby satisfying the

requirement of sample-splitting by design. For a more detailed introduction to embeddings,

we refer readers to Chernozhukov et al. (2024).

More recently, large language models (LLMs) (a cutting-edge version of embedding mod-

els) employ powerful “transformer” architectures that are able to not only capture the context

around each word, but also encode the contextual meaning implied by relevant parts of the

text that are far apart in a sentence or document (via attention mechanisms). Furthermore,

these models are generally trained with massive input from the Internet and are likely to

13We also apply PCA in our empirical application.
14Please see our discussion in the Web Appendix on other encoding methods and their inability to suc-

cessfully meet the above criteria.
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only improve with time. Therefore, we believe that the embeddings used by LLMs, such as

ChatGPT, can better model HT compared with human codification and other algorithms.

2.3.2 Estimation of GT

When predicting outcomes or treatment effects for an out-of-sample treatment, researchers

need to impose some prior on the mapping (GT ) from the contextual space to treatment ef-

fects. This is what makes extrapolation feasible. For example, in the context of combinations

of images and text, Bajari et al. (2023) impose a linear functional form on GT , while in the

context of images alone, Dew (2023) assumes a Gaussian process with a squared exponential

kernel. Here we make a weaker, more general assumption. In particular, we assume only

that GT is Lipschitz continuous in its arguments, satisfying the following condition:

|GT (HT (j), w)−GT (HT (k), w
′)| < L · ||(HT (j), w)− (HT (k), w

′)||

for any j, k ∈ T and any w,w′ ∈ supp(W ). Here, L ≥ 0 is the Lipschitz constant, || · ||

is the Euclidean norm, and supp(W ) is the support of W . The above Lipschitz condition

restricts how fast the response surface, GT (·, ·), can change with respect to its arguments.

This assumption allows us to predict outcomes or treatment effects with flexible partition-

based ML algorithms, such as XGBoost (boosted trees) or random forests, which have been

shown to have good performance across a wide variety of predictive tasks. To see the role of

this assumption, let us consider a partition-based ML algorithm that constructs a partition

whose maximum diagram is δ (meaning for any l ∈ T and any w ∈ supp(W ), we can find

a neighbor j ∈ T and w′ ∈ supp(W ) such that ||(HT (l), w) − (HT (j), w
′)|| ≤ δ), then the

Lipschitz continuity assumption implies that the |bias| is bounded by L · δ. By making

the partition fine enough (δ → 0) which, for example, is achieved by adding more trees

for boosted trees and random forests, the bias vanishes to zero (a necessary condition for
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good prediction performance)15. Note that the linear model assumption made by Bajari

et al. (2023) which assumes a global functional form of GT and the Gaussian process (with

the squared exponential kernel) assumption made by Dew (2023) which restricts the global

variation of GT are stronger assumptions — it is not hard to verify that both assumptions

satisfy the Lipschitz continuity condition.

While the exact approach for constructing prediction intervals depends on the predictive

methods researchers employ, such as the standard textbook version of predictive intervals

for linear models as in Bajari et al. (2023) and the posterior predictive intervals for Gaussian

processes as in Dew (2023), there are two key points to consider. First, inference should

take into account the uncertainty arising from employing estimated doubly robust scores

but not the uncertainty arising from estimating the nuisance functions (estimated outcome

model µ̂ and estimated propensity model ê) used to construct the scores. We need not worry

about the estimated nuisance functions because the doubly robust scores satisfy the Neyman

orthogonality condition; they “block” the uncertainty induced by the upstream estimations

from propagating to the downstream tasks (Newey and McFadden, 1994). Therefore, we can

ignore the uncertainty of the estimations before doubly robust scores are constructed and

need only consider the uncertainty in the estimated scores and downstream estimates.

However, because these estimated scores are the dependent variable in the predictive

stage, robust standard errors (e.g., Eicker–Huber–White standard errors) should be employed

to account for the estimation errors in the estimated scores. Second, if ĤT is estimated on

the same dataset for the causal or predictive inference task, then the uncertainty arising

from this pre-processing step should also be accounted for. The second point highlights

another benefit of using pre-trained models, such as Ada-embeddings from ChatGPT. For a

particular dataset, the output of a pre-trained model is deterministic (there is no randomness

arising from it). Therefore, we do not need to quantify the uncertainty of ĤT . If one were

to instead train ĤT for the particular task at hand using some candidate ML algorithm, it

15Of course this only holds in the asymptotic limit. In practice, there always exists a finite sample bias
for every estimator.
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is generally computationally costly to quantify the uncertainty arising from this part of the

process (e.g., see Bajari et al. (2023)).

Should researchers choose to use flexible nonparametric ML algorithms to model GT

and pre-trained models for HT , we suggest conducting bootstrapping for constructing pre-

dictive distributions/intervals (Breiman, 1996; Fushiki et al., 2005). Bootstrap aggregation

essentially works as an ensemble learning technique, which enjoys good predictive perfor-

mance by strengthening weaker predictors to a strong predictor. More recently, Andrews

and Mikusheva (2022) find the bagged prediction smooths discontinuities (if any) in the pre-

bagged predictive models. Consequently, the final bagged predictive model often satisfies

the Lipschitz continuity assumption more closely compared to the pre-bagged ones.

Finally, one last point to consider is trimming doubly robust scores since the target

predicted object is (C)ATE, which is sensitive to outliers. Similar to trimming propensity

scores, trimming doubly robust scores can alleviate the impact of outliers, thus improves

finite sample predictive performance.

3 Empirical Application - Setting and Data Construc-

tion

We illustrate the capabilities and performance, as well as the limitations, of our framework by

revisiting and extending the multiple, heterogeneous email treatment application of Ellickson

et al. (2023). In that study, the authors employ a doubly robust machine learning estimator

to obtain causal effects of a set of email promotions that were sent to 1.3 million customers

by an online apparel retailer over 45 days in the spring of 2015. The focal outcomes are

customers’ engagement and purchase decisions (email opening rates and spending amounts).

The heterogeneous treatments considered are 34 unique email subject lines, which the authors

hand-encode as multivalued treatment components (categorical encoding). The goal there

was to assess the performance of the different subject lines observed in the sample, and
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to connect the differential in performance to the multivalued treatment components, i.e.,

specific keywords and promotion features (e.g., discounts). However, Ellickson et al. (2023)

are unable to suggest new creatives (i.e., subject lines of new email promotions) and predict

their performance. Therefore, the goal here is predicting the performance of new creatives.

In our empirical application, we measure performance based on the purchase amount of an

email promotion.

For the purposes of this study, we highlight the variation in outcomes (i.e., purchase

amounts) for the heterogeneous treatment effects and the heterogeneity in response to each

treatment. In Table 1, we show the various components present in each email subject

line and estimated ATE of the purchase amount associated with each email, relative to a

common baseline promotion (email 34).16 As shown, there is considerable variation in both

the treatment components of each email, and the performances across the emails. In Figure

2, we showcase the sorted group average treatment effects (GATES) of six emails within our

dataset, along with error bars (that are so tight they do not stand out clearly in the graphs).

By examining the progression of estimated pair-wise performance of each email with respect

to Email 34 (our baseline email), we see that there is considerable heterogeneity across

customers in the response to each of these emails. Our extrapolation approach exploits

the ability to capture the underlying heterogeneity in treatment mapped from the latent

contextual space, which is further moderated by observable customer demographics.

*** Insert Table 1 and Figure 2 about here ***

Ellickson et al. (2023) provide a variety of tests and evidence indicating that the firm

engaged in a sufficiently randomized targeting of their emails to ensure proper estimation of

effects that verify the identification requirements of Assumptions 3 and 4. In particular, they

establish that the variables used for targeting are fully observed and provide strong evidence

of residual randomization (overlap). The pre-treatment covariates used for targeting fall into

16Please see Section 4.1 for a discussion on how we estimate the doubly robust scores that are then
aggregated into the ATEs reported in Table 1 and GATEs shown in Figure 2.
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one of three categories: demographics, RFM variables, and engagement variables. In what

follows, we use these variables to both generate the response surface, and for developing policy

suggestions for our latent treatments. Table 2 provides a list of these customer characteristics

and their summary statistics.

*** Insert Table 2 about here ***

4 Extrapolation Method Evaluation

To assess the ability of our framework to properly quantify the effects of novel heterogeneous

treatments, in terms of both aggregate and heterogeneous effects, we proceed in the follow-

ing stages. We begin by following the process described in section 2.2 to obtain estimates

of the doubly robust scores. Specifically, we perform a series of leave-one-out (LOO) exer-

cises to compare the predictions of our estimation framework against a strong proxy for the

ground truth, the doubly robust scores of each email promotion. Our first validation exer-

cise is to compare the extrapolated average treatment effects (ATEExp) (predicted average

performance) to the estimated average treatment effects computed from the doubly robust

scores (ATED), which captures the actual performance. Our second validation exercise takes

a more granular approach by comparing the sorted average treatment effects (GATES) of

our prediction scores to the GATES-analogs of the doubly robust scores (conditional aver-

ages). Our third and final validation exercise is a comparison of policy performance between

using the extrapolation scores (ITEExp) and the true doubly robust scores (ITED) via a

data-adaptive policy algorithm (policy tree).

4.1 Generating Doubly Robust Scores

The procedure to generate the scores that represent the ground truth closely follows the

approach used in Ellickson et al. (2023), of which the key steps are discussed in section

2.2. To obtain these pairwise doubly robust scores, we must first estimate the nuisance
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functions µ(·) (outcome model) and e(·) (propensity score model). Both tasks are performed

using random forests. This method has been shown to perform well in a variety of causal

domains in which interactions and feature selection are needed (Chernozhukov et al., 2024).

Following standard practice for approaches that involve propensity weighting, we further

trim the estimated propensity scores, ê, such that they lie in between 0.01 and 0.99 to avoid

bias caused by outliers (Crump et al., 2009), then we construct the estimated pairwise doubly

robust scores, τ̂jk,dr, following equation 1. For the purpose of producing good finite-sample

predictive performance downstream, we also trim the obtained doubly robust scores by using

the thresholds of 1% and 99%.

4.2 Generating ĤT

To estimate HT we use the Ada-0002 engine that powers ChatGPT as our contextual embed-

ding model. The Ada engine translates text into a dense numeric vector of 1,536 features.17

As noted earlier, given sample constraints, we require an additional dimension reduction

beyond the full embeddings. In particular, we follow Dew (2023) in using PCA reduction.

We, ultimately, select 28 dimensions, which capture over 99% of the variance in the embed-

dings.18 Figure 3 shows the embedding component plots for our six example emails, and

Figure 4 shows their PCA-reduced counterparts. In both figures (particularly in Figure 4),

there are clear commonalities between emails that share smaller distances. We then test

if the distance order between treatments is maintained between the raw embeddings and

the PCA-reduced embeddings, relying on the calculation of their Euclidean distance. In

the manifold, Euclidean distance can be used by the researcher to view the similarity of

their semantic meaning in the embedding space.19 Figure 5 is a heat map of the Euclidean

17The API of Ada-0002 engine offers an option to choose how many features to output. We recommend
to output all features. If researchers want to further reduce the dimension, they can do so themselves
downstream. In doing so, they can then check whether the dimension reduction violates the distance-order-
preserving assumption.

18We illustrate the performance of each level of dimension reduction through PCA in Figure A.6.
19A common practice to measure distance in the embedding space in the ML literature is to use cosine

similarity. However, cosine similarity has been recently challenged as a valid metric to compare similar
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distance between the embeddings of our 34 email subject lines, for both the raw contextual

embeddings and the PCA reduced embeddings. The lighter regions show greater distance

between email subject lines while the darker regions show email subject lines that are closer

in the contextual manifold. Comparing the heat maps between the raw embeddings (left)

and PCA-reduced embeddings (right), we see only minor differences in the values. More

importantly, the ranking of distances between emails is maintained, which is a requirement

for extrapolation from the context space into novel heterogeneous treatments — the PCA

estimates serve as an adequate proxy for the Ada embeddings in this exercise. Thus, in what

follows, we will work only with PCA estimates, while continuing to refer to them as Ada

embeddings for continuity.

*** Insert Figures 3, 4, 5 about here ***

4.3 Generating ĜT and Predicting Effects of New Treatments

Having obtained ĤT for the different encoders, we proceed to estimate GT (·) for each encoder

and predict the ATEs of new treatments (ATEExp). To simulate the scenario of a new

treatment and evaluate the predictive performance, we conduct a series of LOO prediction

exercises across our email treatments. Our goal is to predict the performance (treatment

effect) of a given focal email (kfocal), so we generate ĜT (·) on the other 32 emails, leaving

out the focal email, and then use ĜT (ĤT (kfocal)) to predict the relative performance of the

focal email. 20 We treat the estimated ATE of the focal email as the ground truth, compare

how close the ground truth (ATED) is to the predicted effect (ATEEXP ). Specifically, the

“ground truth” is the average of the doubly robust scores in the held out data of the focal

email (i.e., the actual performance).

pieces of text in the embedding space Steck et al. (2024). We suggest using Euclidean distance instead. For
completeness, we provide cosine similarity plots in Section A.2 of the Web Appendix.

20Note, although we have 34 emails in the dataset, Email 34 is considered the baseline email. Therefore,
ATEs of 33 emails are calculated with respect to Email 34. In the LOO exercise, each time we leave out an
email for evaluating predictive performance, we are training on the ATEs of the remaining 32 emails.
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When implementing the predictive exercises, we employ an optimally tuned XGBoost al-

gorithm (please refer to Section A.3 for more details). We chose XGBoost as its performance

in prediction tasks is well known, and the boosted tree structure allows for “automatic”

interactions between features through recursive splitting. Further, XGBoost also provides

automatic feature selection, which is useful in our application given the high-dimensional

nature of the PCA-reduced, contextual embeddings. This adaptive feature enhances the

successful predicting the outcomes of new emails, which is especially useful since we only

have 32 email contrasts for estimating GT (·).21

4.4 Aggregate-Level Comparison

To assess the performance of our framework’s ability to predict the outcomes of novel hetero-

geneous treatments (new emails), we compare the 95% confidence interval of the predicted

outcome of the focal email (extrapolated performance) versus the confidence interval of the

doubly robust scores (ground truth). Figure 6 presents the performance of our method in

generating predictions for this exercise. Only two of the emails fail to have overlapping con-

fidence intervals, though one email has a large confidence interval and noticeably different

outcome, Email 5. To further check the predictive power of our model, we regress the ATED

of each email on the corresponding ATEExp. The goal is to quantify how much variation our

extrapolated scores capture from the actual, observed scores. Using this approach, we find

the R2 to be 78.6%, providing further evidence that our method yields meaningful estimates

of the outcomes from novel heterogeneous treatments.

*** Insert Figure 6 about here ***

We note there are a few clear and revealing cases in which we fail to accurately capture

the ground-truth. In what follows, we use Euclidean distance to illustrate the underlying

21In general, researchers should select a predictive model that is suitable for their context, for example,
Bajari et al. (2023) select a linear model in their embeddings, which is motivated by hedonic theory from
economics.
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issues. Recall that Figure 5 provides a heatmap of the Euclidean distance between each

focal email and the other 32 pair-wise contrasts used to build the model. Examining the

Euclidean distance measures in the heatmap, we find a consistent pattern based upon the

treatments that show confidence intervals closer to the doubly robust scores (ground truth)

versus those that do not. Emails that share a lower Euclidean distance (more similar)

with other emails yield better performance. Comparing the Euclidean distance measures

for Email 5 (a simple Happy Birthday email) with the other 32 emails in our dataset, we

note the following patterns. First, the lowest Euclidean distance between Email 5 and those

used to build the predictive model for Email 5 is .67 — this lack of similarity is the primary

contributing factor to the poor performance. This should not be surprising because XGBoost

is a partition-based estimation technique that heavily relies on local information. Second,

the emails that are shown as similar do not share the same context with the focal email.

For example, one of the similar emails wishes the receipt a Happy Memorial Day. While

the positive sentiment is shown in both emails, the contexts are clearly divergent. Since a

researcher cannot directly interpret the embedding structure, this exercise is important to

describe both the features and context of the treatment object.

In contrast to the Happy Birthday email, one email that shows clear congruence between

the ATEExp and ATED is Email 13, which offers 30% off Clearance Items. The Euclidean

distances of the top four similar emails with Email 13 are all below .36. Exploring the

contextual nature of these emails, we find great similarity. Specifically, the emails within

the top four are clearance emails with differing percentage off discounts. The closest email

to Email 13 is a 20% off clearance items email, with another 40% off clearance email (but

with a slightly different subject line) as the next highest. The closeness in terms of both

the context (clearance items) and ordering of discounts shows that Ada embeddings can

be used to describe relevant email characteristics. Overall, to predict the effectiveness of

novel heterogeneous treatments, there must be support on the observed set of contextual

features (experimental design points) around the treatments for prediction. Researchers and
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managers must consider whether the feature space shows similar richness before they perform

predictive tasks. 22

4.5 Heterogeneity in Response Comparison

Our prior analysis revealed that our proposed framework yields accurate estimation of ATEs,

which suggests that the contextual embeddings are able to capture the signal provided by

the latent contextual structure of the promotions. However, average performance does not

reveal if our method is able to account for the heterogeneous reactions to novel treatments.

For use in targeting, we must account for the moderating effect of customer characteristics

on the treatment outcomes. To explore the predictive power of our method at this more

granular level, we use sorted average treatment effects (GATES). Proposed in Chernozhukov

et al. (2017, 2018), GATES orders the scores in ascending order and then partitions them into

subgroups. GATES analysis both eliminates some idiosyncratic noise from the doubly robust

scores and provides a distribution of effects for later analysis. For example, in Chernozhukov

et al. (2018), after examining the GATES, they then look to identify key demographic

characteristics that are associated with the positive versus negative effects via classification

analysis (CLAN). For our purposes, in assessing out-of-sample predictive performance, we

use the GATES to separately bin ITEExp and ITED to see if our method effectively recovers

heterogeneous effects at a more granular level.23

For each email in our LOO exercise, we create 1000 bins (representative of .1% of the

distribution) based on the sorted ITED scores. Within these bins, we compute the associated

conditional average treatment effect from both the doubly robust scores (GATESD) and the

extrapolated scores (GATESExp). Next, for each email, we regress the GATESD on the

22We also considered a number of other encoders for the task of computing the ATEs in our application.
We have included them and a discussion of their performance in the Web Appendix. In brief, the use of
PCA-reduced, contextual embeddings performs better than other candidate methods.

23For completeness, Figure A.7 presents the ATED versus the extrapolated ATEExp when we include
customer demographics. Noticeably, the error bars for the prediction are larger when customer demographics
are considered, which is a direct cause of lack of support in some regions of customer characteristics in the
dataset. While this may be a cause for concern, our analysis of the GATES provide evidence that we are
able to effectively recover the trajectory of heterogeneous scores of novel heterogeneous treatment.
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GATESExp and compute the R-squared to quantify the amount of actual variation in the

scores captured by our projection. Across the 33 email experiment, our average R-squared is

65.36% (Median R2: 66.43%), with a 10%− 90% interpercentile range of 44.86% to 82.63%.

Given that heterogeneous effects are constructs that are much harder to recover, compared

to ATEs, the predictive power shown in this exercise supports the success of our approach

with only 33 treatments in our dataset.

To demonstrate how the GATES can be directly tied to usable, customer-level features,

we perform the following classification analysis on one email. For Email 13, which we have

highlighted in prior sections, we compute a set of RFM variables based upon the median

split of the GATES. Recall that GATES are constructed based upon the ascending order of

the doubly robust scores, thus we are interested in seeing if there is systematic difference

in customer-level characteristics between those with low scores versus high scores. Table 3

shows the average profile of customers based upon a median split of the GATES. Those cus-

tomers associated with a higher GATES (above the median) show higher values in recency-

frequency-moneytary (RFM) variables than their counterparts with lower GATES (below the

median). Specifically, the customers with higher ITED open emails more frequently, they

have purchased more recently and frequently, and have higher purchase amounts. Thus, we

argue, the use of the GATES directly links to known behavior of customer characteristics

through RFM variables.

*** Insert Table 3 about here ***

4.6 Policy Recommendation Comparison

Our prior exercises examine if our method can accurately predict both the average effect of

new treatments, and their heterogeneous effects. Given that practitioners choosing to deploy

treatments seek to do so in the most efficient manner, we now explore the use of a data-

driven targeting policy based upon the predictions of our model. Specifically, we compare

the relative accuracy of assigning treatment using ITEExp for a novel treatment against the
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corresponding treatment assignments using ITED. In other words, how does the predictive

approach compare to knowing the actual performance in the field (i.e., ex ante rather than

ex post).

For our data-driven targeting policy, we employ the recursive partitioning method pro-

posed by Athey and Wager (2021), also known as policy tree. The objective of this algorithm

is to find the best set of heuristics for allocating the treatments under consideration. We

implement this assignment using the doubly robust scores. Treating these scores as outcome

signals, the algorithm explores each variable in sequence to balance the gains of allocating

a given treatment to every observation in that partition against the regret of misallocation.

The result is a decision tree that provides the heuristics associated with treatment assign-

ment. Thus, for any set of characteristics, the user of policy tree can obtain a prediction of

the treatment assignment.

For our exercise, we contrast the assignments proposed by a policy tree of depth 2 against

those of the Oracle policy assignment. Oracle policy assignment assumes that, for each

observation, a given heuristic rule is applied. In our context, this heuristic dictates that if

a customer’s doubly robust score for an email, relative to our baseline Email 34, exceeds 0,

the customer receives the focal email; otherwise, the customer is assigned the baseline email.

Since our doubly robust scores are pairwise contrasts between a focal email and email 34, this

exercise approximates the targeting of a chosen email against email 34 (the baseline email).

Thus, we calculate the number of correct predictions between these two emails using policy

tree versus the Oracle prediction to measure the percentage of correct predictions. We then

compute the ratio of correct predictions between the policy tree created with extrapolated

scores PTExp against the policy tree created with doubly robust scores PTD.

For illustrative purposes, we showcase the six emails used in our motivating example to

highlight the performance of our method against the actual doubly robust scores in driving

the correct policy suggestions. The ratio of correct predictions between PTExp and PTD for

our six example emails, on average, is 0.82. Of these six emails, the lowest value of the ratio
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of correct prediction is 0.68 and the highest is 0.96. For these six emails, we compute the

ratio of revenue from targeting based on PTExp versus PTD. To compute revenue, we sum

ITED based on the policy selection from PTExp and PTD, respectively. We find that the

policy associated with scores extrapolated from our method recovers 71.72% of the revenue

obtained when basing the assignments on actual performance.

Based upon these results, we conclude that our predictive method is able to adequately

capture the performance of novel heterogeneous treatments. We turn next to an empirical

exercise in which Generative AI is used to both develop, and assess the performance of, new

email creatives.

5 Novel Treatment Creation and Evaluation using Chat-

GPT

Our proposed method relies on Ada embeddings to accurately represent the latent context.

They are then used to map the response surface from treatment to outcome. These em-

beddings are also the foundation of ChatGPT’s generative model. To conclude the paper,

we examine one further use case: evaluating ChatGPT’s ability to generate new emails and

accurately predict their performance. To assess ChatGPT’s ability to predict the success of

suggested interventions, we use our method to calculate the extrapolated scores for a ran-

dom subset of individuals. With these scores, we can then compare the ranking provided by

ChatGPT against the predicted performance provided by our model.

We conduct our exercise as follows. First, we provide ChatGPT with a set of features and

contextual language it can use to generate new emails. Second, we further define that the

generated content must be an email subject line and also constrain the number of characters

that ChatGPT can use to create the subject line. This step is to ensure the generated

content is comparable to content (subject line of an email) observed in the data.24 Third,

24Please see our discussion in the web appendix for the actual prompting used in ChatGPT.
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we ask ChatGPT to create 5 new email promotions and then rank them from best to worst

in its assessment of generating incremental revenue. Fourth, we assess the performance of

the generated content by utilizing our complete set of average treatment effects of 33 emails

relative to our baseline email 34 to construct an XGBoost model, as outlined in our previous

sections. Table 4 shows the generated emails, the ranking provided by ChatGPT, and the

extrapolated ATEs of these emails using our method.

*** Insert Table 4 about here ***

Two findings immediately stand out: (1) ChatGPT is indeed able to suggest coherent

email subject lines, some of which are predicted to perform very well; (2) ChatGPT is unable

to determine the relative success of different emails.25 Based on our findings, we conclude

that ChatGPT and other large generative models, though trained on an extensive text

corpus (so they can estimate HT (·) well), lack the specialized domain knowledge to predict

performance. In our case, the specialized knowledge is the estimated response surface, GT (·)

function. By combining the latent contextual information (ĤT (·)) with observable outcome

data to estimate the GT (·) function, we are able to combine domain specific knowledge in the

creation of an effective tool to predict the performance of novel heterogeneous treatments.

5.1 Targeting of Novel Treatments

In our prior analysis, we showed that the use of ITEExp to generate a policy tree can have

similar performance as a policy tree grown with ITED. Based upon this knowledge, we

further posit that a manager using ChatGPT to create new content can use our approach

to not only see how well each suggestion does on average, but also prescribe personalized

targeting decisions. We use our model with all 33 pair-wise email ATEs to predict the ITE

25For completeness, we also ask ChatGPT to rank order the actual emails we observe in our empirical
setting. We simulate the responses 30 times and calculate the average ranking of them based upon ChatGPT
and present the differential between actual performance versus ChatGPT’s suggested performance in the Web
Appendix in FigureA.8. This exercise show lack of meaningful assessment by ChatGPT to our example with
generated content.
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for 10,000 simulated individuals for each of two generated emails. For this exercise, we use

two GPT generated emails with relatively similar predicted average performance: Limited

Time Offer: 50% Off Shipping on All Products! (Opt 1) and Discover New Products:

Free Returns on Every Order! (Opt 2). One email’s focus is on providing an immediate

shipping discount, while the other offers free returns. The difference in promotional type

should provide an interesting contrast for potential targeting implications. For our subset

of simulated individuals, the ATE of Opt 1 is −.068, while the ATE of Opt 2 is −.071.26

Our goal here is to see if there is a possibility of generating a higher lift through careful,

data-driven targeting.

To see if there are gains from targeting, we estimate a shallow, two-level tree using the

policy tree algorithm outlined in Section 4.6. Figure 7 presents the decision tree of this

targeting exercise. As shown, the three most critical variables in targeting the emails are the

total number of orders placed by the individuals in the past, their web spending, and the

recency of their purchases. Individuals with low amounts of orders (less than 10) and low web

spending (average web spending less than $47) should get Opt 1, while greater web spending

results in Opt 2 being assigned. If the individual has a greater order frequency (more than 10

orders), then the context of targeting turns upon how recently has the individual purchased.

Someone who has purchased very recently should get Opt 2, while all others in the high order

frequency category should get Opt 1. Overall, the recommendations of the policy tree are

intuitive and reflect the patterns revealed in the earlier CLAN exercise. Those individuals

who have engaged with the firm less (in both frequency and purchase amount) likely need

an upfront discount on shipping to be willing to purchase. While those that purchase less

often, but in higher amounts, would benefit from free returns. On the other hand, frequent

purchasers, who engage with the company more often, would get greater benefit from the

free returns. The sum total of this targeting policy results in an overall lift of -.04, which is

an improvement of approximately 40%.

26The negative numbers of the ATE are not indicative of losing money per se. Instead, they show that
these emails perform worse in revenue generation than our baseline email.
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*** Insert Figure 7 about here ***

6 Conclusion

In this paper, we propose a framework that allows for a researcher to extrapolate the perfor-

mance of a novel treatment using contextual embeddings and machine learning nested in the

potential outcomes framework. We show that contextual embeddings summarize the latent

context of unstructured data seen in digital marketing, a common marketing application.

Further, since contextual embeddings reside on a common linguistic manifold, we show that

our method is able to predict the outcomes of novel heterogeneous treatments. By linking

the latent context with customer characteristics and doubly robust scores, we generate a

response surface that measures the effects of novel treatments. We validate our method by

exploring the performance at the ATE, GATES, and policy recommendation levels. Working

with only 32 ATEs in total, we show consistent recovery of heterogeneous effects and optimal

policy choices for treatments not included in the trained model.

Beyond our proposed framework, our study highlights the usefulness of using contextual

embeddings directly in economic applications. The ability to quickly and inexpensively ob-

tain these embeddings highlights their value as high-dimensional treatment objects within

a latent class estimator. Though they have been used as confounders in other studies (i.e.,

Bajari et al. (2023)), operationalizing them directly is an important new step in the empirical

literature. Future research could explore their direct inclusion and improve interpretability

to refine estimates of causal objects of interest. Additionally, given that other media types

such as video and images can also be operationalized as embeddings, our latent class causal

framework can be readily extended to various marketing vehicles. Moreover, we emphasize

that while AI offers valuable insights, it cannot replace human judgment. We provide a way

for a marketing manager or researcher to judge the choices made by ChatGPT by providing

a framework that allows for off-policy evaluation of heterogeneous treatments. Last, our
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study demonstrates the viability of ChatGPT’s embeddings in uncovering language struc-

tures previously inaccessible to academic research, opening up new avenues of investigation

in marketing as marketers increasingly engage with customers through text-based initiatives.
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Customer Characteristics
Group AOV Retail ($) AOV Web ($) Days Open Days Purchase Order Count

Below Median 8.79 (28.89) 16.79 (34.51) 195.69 (284.71) 953.39 (875.78) 0.69 (1.64)
Above Median 9.77 (27.76) 51.48 (46.81) 92.25 (173.82) 380.07 (574.21) 3.85 (4.65)
Overall Average 9.28 (28.33) 34.14 (44.63) 143.97 (241.48) 666.73 (794.06) 2.27 (3.83)

Table 3: Example of Customer Characteristics Split for Email 13 Based on Sorted Average
Treatment Effects. This table shows the demographic differences based upon a median split of the sorted
average treatment effects (GATES) from Email 13’s customers. The GATES are ordered from lowest to
highest based on the doubly-robust scores calculated by DML, thus GATES below the median are lower than
those above the median. We show the average customer characteristics (with standard error in parentheses)
based on this median split of the GATES in the table. As shown, those customers associated with a
higher GATES are more engaged with the company, they have higher spend on both retail and website. In
addition, they are more engaged with opening emails (lower Days Open), purchased more recently (lower
Days Purchase), and purchased more often (higher Order Count). Thus, the GATES can be thought of as
a proxy for the known effect of RFM variables.

Subject Line ATE GPT Ranking

Exclusive Product Sale: Extra 20% Off Today! 0.043 3
Other Kinds Extravaganza: Code for Extra Savings! -0.010 4
Clearance Event: BOGO Deals + 30% Off Products! -0.023 1
Discover New Products: Free Returns on Every Order! -0.028 5
Limited Time Offer: 50% Off Shipping on All Products! -0.089 2

Table 4: Extrapolated Performance of GPT Generated Emails with GPT Rankings. This table
shows the predicted average performance (ATE) of each GPT generated email. Emails are ranked based upon
the ATE performance, from best to worst. In addition, we include a column that shows the rankings of each
email’s performance based upon GPT’s ranking. ATEs are calculated from an optimally-tuned, XGBoost
model with the PCA-reduced, Ada Embeddings as our set of feature variables and the dependent variable is
the doubly robust scores from our 33 email pair-wise contrasts. After building the XGBoost model, we use
the PCA-reduced, Ada Embeddings from the new email creatives to predict their performance. As shown,
GPT is useful for ideation but is unable to properly rank order the emails based upon their performance.
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Figure 1: Counterfactual Prediction. In this figure, we show the intuition behind our latent treatment
framework. The treatment assignment rule, D(·), samples all points with different propensities in the
observed treatment set, S, e.g., j, k and l. Based on our assumptions, we can locate the treatment response
surface on context set observed in data, HT (S). After imposing some choice of functional form assumption
on the response surface, we can extrapolate the response surface to the context set of interest, HT (T ).
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(a) Email 5: Happy Birthday! (b) Email 6: Happy Memorial Day!

(c) Email 12: Extra 20% off Clearance! (d) Email 13: Extra 30% off Clearance!

(e) Email 17: Extra 30% off Clearance - Online Only! (f) Email 18: Extra 40% off Clearance - Online Only!

Figure 2: GATES of Six Example Emails. We showcase the sorted average treatment effects (GATES)
of six emails within our dataset, along with error bars (that are so tight they do not stand out clearly in the
graphs). ITEs of each email are assigned to ten groups in ascending order.
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Figure 3: Ada Embeddings of Six Example Emails. This figure shows the Ada Embeddings of 6
example emails. In this figure, Email 12 has subject line “Extra 20% off Clearance!” Email 13 has a subject
line “Extra 30% off Clearance!” Email 17 is an “Extra 30% off Clearance - Online Only!” Email 18 is an
“Extra 40% off Clearance - Online Only!” Email 5 is a “Happy Birthday!” email. Email 6 is a “Happy
Memorial Day!” email. As shown, there is commonality between the emails that show the lowest Euclidean
distance, such as Emails 12 and 13.
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Figure 4: PCA Representation of Six Example Emails. This figure shows the result of PCA reduction
of the Ada Embeddings on our 6 example emails. In order to capture as much variance in the contextual
embeddings as possible, we use 28 variables from PCA reduction in our model. In this figure, Email 12 has
subject line “Extra 20% off Clearance!” Email 13 has a subject line “Extra 30% off Clearance!” Email 17
is an “Extra 30% off Clearance - Online Only!” Email 18 is an “Extra 40% off Clearance - Online Only!”
Email 5 is a “Happy Birthday!” email. Email 6 is a “Happy Memorial Day!” email. As shown, there is
commonality between the emails that show the lowest Euclidean distance, such as Emails 12 and 13.
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Figure 5: Euclidean Distance Measure of Ada Embeddings for 34 Email Subject Lines. This
figure shows the Euclidean distances between the Ada Embeddings of our 34 email subject lines. The left
panel shows the Euclidean distances based on the raw Ada embeddings. The right panel shows the Euclidean
distances based on the PCA-Reduced, Ada embeddings. Darker blue regions are a distances between 0 and
.2. Bright yellows correspond to a distance over .6. As shown the majority of our emails have distance
measures between .4 and .2. The largest outlier is Email 5, the Happy Birthday! email, which has distance
measures above .65. The figure shows that our emails show great saturation in the feature space, given the
close proximity to each other. Most importantly, the use of PCA reduction maintains the natural ordering
of distances found in the raw embeddings.
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Figure 6: Comparison of Average Treatment Effect (Ada - Extrapolated Score) using Ada
Embeddings against the Doubly Robust (DML) Estimates of the Unconditional Purchase
Amount. This figure shows the performance of using Ada Embeddings to predict the average treatment
effect (ATE) outcome of newly generated email creatives. We perform a leave-one-out exercise in our dataset,
where each focal email is left out, our hold out email, and used as a new email creative. We train an optimally
tuned XGBoost algorithm on the remaining 32 email doubly robust scores with the feature variables being
the PCA measures of the remaining emails. Once estimated, the mean and standard error of the hold out
email is calculated. For comparison, we use the ground truth, doubly robust score of the hold out email as
a benchmark for comparison. Error bars are plotted at the 95% level. This figure shows that using the Ada
Embeddings provides a viable set of features to predict new email creatives, as approximately 93% of our
emails show overlapping 95% confidence intervals.
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Orders
≤ 10 orders

AoV Web
≤ $47

Days Purchase
≤ 4 Days

True

True True

False

False False

Opt 1: -.056

Opt 2: -.092

N: 6,334 

Opt 1: -.088

Opt 2: -.001

N: 3,520 

Opt 1: .033

Opt 2: .184

N: 84

Opt 1: -.103

Opt 2: -.258

N: 548 

Policy Tree Targeting of 50% off Shipping (Opt 1) vs. Free Return (Opt 2) Emails

Figure 7: Policy Tree Targeting Exercise of Heterogeneous Treatments. This figure shows the
decision tree result of the Policy Tree Algorithm (Athey and Wager, 2021) recommending targeting heuris-
tics of two newly generated emails: Limited Time Offer: 50% Off Shipping on All Products! (Opt 1) and
Discover New Products: Free Returns on Every Order! (Opt 2). Individual-level scores were calculated
using an optimally tuned XGBoost Algorithm that contains both PCA-reduced Ada embeddings and pre-
treatment features shown in Table 2. We randomly sample approximately 10,000 individuals for the policy
tree construction. Next, we calculate the new, individual-level scores for the two new emails generated by
ChatGPT. Policy Tree then provides the heuristics of targeting based upon the calculated doubly-robust
scores between the two different emails. Continuous variables were into 50 bins based upon the distribution
of each variable. All pretreatment variables were used to construct the policy tree. As shown, there are
clear targeting implications. We show the group average treatment effects (GATES) in the final nodes of
the decision tree from policy tree as well as the number of observations in that node (N). We denote the
chosen policy tree strategy in bold and italics within the final node. This figure shows the usefulness of
targeting novel heterogeneous treatments based on pretreatment covariates. Lack of targeting results in a
loss from the baseline email of -$717.80 for Opt 1 and -$739.86 for opt 2 versus a loss from the baseline email
of -$425.77 from the targeting shown in this figure, which is a 40% improvement.

46



Web Appendix

A.1 Performance of Different Text Encoders

Keeping the above two requirements in mind, we now discuss some popular estimators of
HT , and provide guidance on which one is expected to be perform best. The earliest and
most common practice is to estimate HT by human codification. Here researchers pre-define
a set of characteristics that describe the treatment object, typically drawing upon domain
expertise. There are two key limitations of this approach. First, it is hard for human agents
to fully encode the information in unstructured data, e.g., long text documents, video, audio,
etc. In other words, this approach does not easily scale. Second, it is easy for human-beings
to over-fit the encoded information based on their own experiences, such as researchers and
customers having different interpretations of the key aspects of promotion emails.

Given the rapid progress in developing scalable ML algorithms, researchers and practi-
tioners have gradually transitioned to algorithmic encoders over the past 15 years. These
modern encoders offer several benefits over human codification. First, they are able to en-
code unstructured data at scale. Second, they can be trained with massive amounts of inputs
(including the entire corpus of the internet, subject to computing and copyright constraints).
Third, the fact that they are pre-trained on a global domain can lead to less concern for
over-fitting when used in a particular context (such as novel treatment prediction).

There are now many algorithmic encoders to choose from. For instance, in the domain of
text data, researchers can choose between topic modeling, n-gram, and embedding models
(among other options). Topic modeling refers to an ML-based algorithm of clustering or
grouping objects together based upon similarities in the text they include. By finding a
latent set of topics, the algorithm then classifies the pieces of text into different groups.
Alternative, n-grams refers to an algorithm that develops a set of features based upon a
sequence of n adjacent words obtained via text classification.

To confirm our conjecture that the contextual embeddings can better model HT than
other candidate method, we consider four different approaches: human codification, topic
modeling, bi-grams (n-grams for n = 2), and contextual (Ada) embeddings extracted from
ChatGPT. To illustrate what the email subject lines look like in the contextual space after
being encoded, Figures A.1 – A.3 plot the encoded contextual information of 6 example emails
for human codification, topic modeling, and bi-grams, respectively.27 In these figures, each
vertical, colored line represents 1 of the contextual features that describes an email subject
line. We can see that the coarsest information is generated by topic modeling. This is not
surprising because we only have 34 emails, so there are not many topics to generate. On the
other hand, Ada embeddings generate the finest information, implying that this approach
is able to capture subtle differences in the contexts of these subject lines. For example,
Email 12 states “Extra 20% off Clearance - Online Only!”, while Email 13 is “Extra 30% off
Clearance - Online Only!”. Even at this granular level, we see similar patterns in these two
emails across the embeddings: the pattern of light vs. dark is very similar between the two.
Contrast that with Email 5, an email subject line that merely states “Happy Birthday!”.
While there are some similarities across the spectrum of embeddings, the relative positions of

27We include these for comparison with our Ada Embedding Figure shown in the main body of the paper.
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light and dark bars are quite different between Email 5 and Emails 12 and 13. The contrast
between these embeddings, while residing in the same space, provides some insight into how
the fundamental characteristics of these messages are mapped into the embedding space.
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Figure A.1: Human Codification Embeddings of 6 Example Emails. This figure shows the Human
Codification Embeddings of 6 example emails. In this figure, Email 12 is a Extra 20% off Clearance! email.
Email 13 is a Extra 30% off Clearance! email. Email 17 is a Extra 30% off Clearance - Online Only! email.
Email 18 is a Extra 40% off Clearance - Online Only! email. Email 5 is a Happy Birthday! email. Email 6
is a Happy Memorial Day! email.

We first check the performance of the Ada embeddings versus the other candidate meth-
ods in terms of in-sample fit (for this initial exercise, we do not leave out any emails).
Figure A.4 presents the results: we bootstrap the RMSE values across 50 simulations for
each method and present the percentage difference in RMSE of the other methods versus
the Ada-PCA values. The methods are ordered from left to right in terms of their increasing
percentage differential in prediction of the RMSE. In this exercise, we see that topic mod-
eling performs the worst, which is not surprising since it generates the coarsest contextual
representation. The Ada embeddings are shown to perform as well as, if not better than,
the other methods in capturing the essence of the high-dimensional treatment objects in our
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Figure A.2: Topic Modeling Embeddings of 6 Example Emails. This figure shows the Topic
Modeling Embeddings of 6 example emails. In this figure, Email 12 is a Extra 20% off Clearance! email.
Email 13 is a Extra 30% off Clearance! email. Email 17 is a Extra 30% off Clearance - Online Only! email.
Email 18 is a Extra 40% off Clearance - Online Only! email. Email 5 is a Happy Birthday! email. Email 6
is a Happy Memorial Day! email.
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Figure A.3: Bigram Embeddings of 6 Example Emails. This figure shows the Bigram Embeddings
of 6 example emails. In this figure, Email 12 is a Extra 20% off Clearance! email. Email 13 is a Extra 30%
off Clearance! email. Email 17 is a Extra 30% off Clearance - Online Only! email. Email 18 is a Extra 40%
off Clearance - Online Only! email. Email 5 is a Happy Birthday! email. Email 6 is a Happy Memorial Day!
email.
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setting. Though there is not much material difference between the fit of the four methods,
our setting is an ideal one for the other methods to succeed. Email subject lines have a
limited amount of text, and that text has limited variability. Other candidate methods can
easily capitalize on this lack of variability to generate appropriate feature vectors. Even
so, we find that the simple use of the Ada embeddings from ChatGPT provides the best
solution in this case. Given the constrained set of text, we argue that in situations with a
richer depth of text, the benefits of the contextual embeddings will only grow compared to
other candidate methods.
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Figure A.4: Comparison of Ada Embeddings as Feature Variables Against Commonly Used
Text-Classification Methods. This figure shows the relative performance of the RMSE from using Ada
Embeddings versus three other candidate methods of text-classification. We use the bigram method, topic
modeling, and human codification to generate the feature variables for an optimally tuned XGBoost Model.
We bootstrap our sample 50 times and then calculate the mean RMSE performance for all four methods.
The figure shows the percentage difference between the Ada embeddings versus each candidate method. In
all three cases, the Ada embeddings perform better than the three candidate methods in having a lower
RMSE.
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A.2 Contextual Embedding Construction

For completeness, we include Figure A.5, which shows the cosine similarity between the email
contextual embeddings. Though we focus on the use of Euclidean distance as our metric
of feature saturation, this figure shows similar support with our definition using a different,
commonly used metric.
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Figure A.5: Cosine Similarity Measures of Ada Embeddings for 34 Email Subject
Lines. This figure shows the cosine similarity ratings of our 34 email subject lines. Darker
blue regions are a cosine similarity measure of approximately .7. Bright yellows correspond
to a cosine similarity measure near 1. As shown the majority of our emails have cosine
similarity measures between .85 and 1. The largest outlier is Email 5, the Happy Birthday!
email, which has cosine similarities around .75 or lower. The figure shows that our emails
show great saturation in the feature space, given the close proximity to each other from the
cosine similarity measure.
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A.3 XGBoost Information and PCA on Embeddings Robustness

In our empirical analysis, we’ve transformed the 1536-dimensional Ada embeddings into a
set of 28 PCA-reduced embeddings. Ada embeddings lack direct human interpretability, so
reducing their dimensionality doesn’t result in any loss of crucial information for manage-
rial insights, provided the reduced embeddings capture the majority of the variance. This
reduction also facilitates the utilization of more parsimonious and scalable models on the
transformed vectors. To determine the optimal number of PCA components, we systemat-
ically increased the number of components and examined their ability to explain variance.
We settled on using PCA with 28 components, as it accounted for 99% of the variance, as
illustrated in Figure A.6.

In our XGBoost model, we use a histogram-based algorithm to build the trees. Fur-
ther, we leverage several key parameters: ‘subsample’, ‘max depth’, ‘colsample bytree’, and
‘learning rate’. Each of these parameters plays a crucial role in shaping the behavior and
performance of our model. We meticulously tune these parameters to optimize the perfor-
mance of our XGBoost model. Below, we detail the significance of each parameter and the
range we explore during our experimentation.

• ‘subsample’: This parameter controls the fraction of samples used for training each
tree. It ranges from 0 to 1.0 and represents the proportion of the dataset to sample
randomly without replacement. A value of 1.0 means using all samples for each tree.
We vary subsample from 0.5 to 1.0 in increments of 0.1.

• ‘max depth’: This parameter sets the maximum depth of each tree in the ensemble.
It controls the complexity of the trees and helps prevent overfitting. Larger values
can lead to more complex models, potentially overfitting the training data. We vary
max depth from 3 to 8 in increments of 1.

• ‘colsample bytree’: This parameter specifies the fraction of features (columns) to con-
sider when building each tree. It ranges from 0 to 1.0 and represents the proportion
of features to randomly select for each tree. Smaller values can help prevent overfit-
ting by promoting diversity among trees. We vary colsample bytree from 0.3 to 0.9 in
increments of 0.1.

• ‘learning rate’: This parameter controls the step size at each iteration while moving
toward a minimum of the loss function. It ranges from 0 to 1.0. Lower values require
more iterations but can result in better convergence, while higher values may converge
faster but risk overshooting the minimum. We vary learning rate from 0.1 to 0.6 in
increments of 0.1.
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Figure A.6: PCA Representation of 6 Example Emails. This figure shows incremen-
tal gains of adding another component to PCA dimension reduction of our obtained Ada
Embeddings for 34 emails. Our objective is to capture as much variance as possible for XG-
Boost to use in variable selection. From this plot, 28 variables accounts for approximately
99% of the variance, which is why it is selected. In addition, since the Ada embeddings are
normalized, we show the decay in variance reduction is almost linear rather than geometric
as normally shown in PCA analysis.
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A.4 ATE Prediction with Demographics

For completeness, Figure A.7 presents the ATED versus the extrapolated ATEExp when we
include customer demographics. Noticeably, the error bars for the prediction are larger when
customer demographics are considered, which is a direct cause of lack of support in some
regions of customer characteristics in the dataset. While this may be a cause for concern, our
analysis of the GATES provide evidence that we are able to effectively recover the trajectory
of heterogeneous scores of novel heterogeneous treatment.
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Figure A.7: Comparison of Average Treatment Effect (Ada - Extrapolated Score) using Ada
Embeddings against the Doubly Robust (DML) Estimates of the Unconditional Purchase
Amount. This figure shows the performance of using Ada Embeddings, with the inclusion of customer
demographics, to predict the average treatment effect (ATE) outcome of newly generated email creatives.
We perform a leave-one-out exercise in our sample, where each focal email is left out, our hold out email,
and used as a new email creative. We train an optimally tuned XGBoost algorithm on the remaining 32
email doubly robust scores with the feature variables being the PCA measures of the remaining emails. The
difference between this plot and the prior is the inclusion of customer-level characteristics in development of
the extrapolated scores. Once estimated, the mean and standard error of the hold out email is calculated.
For comparison, we use the ground truth, doubly robust score of the hold out email as a benchmark for
comparison. Error bars are plotted at the 95% level. Noticeably, the error bars for the prediction are larger
when customer demographics are considered, which is a direct cause of lack of support in some regions
of customer characteristics in the dataset. While this may be a cause for concern, our analysis of the
GATES (described in Section 4.5 provide evidence that we are able to effectively recover the trajectory of
heterogeneous scores of novel heterogeneous treatment.
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A.5 ChatGPT Prompting

For completeness, we are including the direct text prompt given to ChatGPT to generate our
new emails. We used ChatGPT 3.5 for this analysis. After submitting the text prompt, we
then asked ChatGPT to rank order the new emails based on its belief of their performance.

• Create subject lines of six email promotions where each can be about:

Product

Clearance

Other Kinds

• In each of these email subject lines, use no more than three of the following components:

May choose a percentage discount between 10% to 50%

Cash Discount

BOGO

Free Shipping

50% Free Shipping

Free Returns

Happy Birthday

Mystery

Code that should be used at checkout

• The following words can be used for embellishment:

Extra

Exclusive

Exclaim

Sale

• The length of each subject line should not exceed 60 characters with an average length
of 50 characters.

• Do not use emojis.

New Creatives

Based on the above prompts, ChatGPT created the following new email subject lines:

• Exclusive Product Sale: Extra 20% Off Today!

• Clearance Event: BOGO Deals + 30% Off Products!

• Other Kinds Extravaganza: Code for Extra Savings!
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• Limited Time Offer: 50% Off Shipping on All Products!

• Happy Birthday Special: Mystery Discount Awaits You!

• Discover New Products: Free Returns on Every Order!
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A.6 ChatGPT ranking of Training Emails

To test the robustness of our findings that GPT is unable to properly rank email creatives,
we use our doubly robust purchase amount orthogonal scores of our 33 emails to serve as
the ground truth of email performance. Next, we ask GPT to rank the 33 emails based
on their purchase performance, where 1 is the best and 33 is the worst. We simulate this
exercise 30 times and perturb the ordering of the emails within the prompt to ensure there
is no bias in the prompt engineering. Figure A.8 shows the results of this exercise. We
order the emails from the best to worst performing based on our DML estimates on the Y
axis. The X axis shows the difference between the Estimated Purchase Amount Rank, from
the DML estimates, against the rank from our simulated GPT prompt. As shown, GPT
is unable to properly rank the creatives based on performance. In fact, those emails which
perform the best, GPT suggests that they would be worst and vice versa. This is congruent
with the exercise from the main paper that examines the predictions of novel heterogeneous
treatments derived by GPT.
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Figure A.8: Differential between Estimated Purchase Amount Rank from DML versus Esti-
mated Purchase Amount Rank from GPT Prompting. This figure shows the difference in ranking
suggested by our doubly robust orthogonal scores versus those suggested by GPT. Simulated GPT ranks are
computed across 30 simulations where the final stated rank is the order based on the simulated rankings.
We show the difference between the DML Ranking versus the GPT Ranking in the figure, where emails are
ordered from best performing (top of the Y axis) to worst performing (bottom of the Y axis). As shown,
GPT is unable to properly rank the best from worst emails.
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