The Dynamics of Retail Oligopoly*

Arie Beresteanua, Paul B. Ellicksonb, Sanjog Misrac, and James C. Reeder, IIId

aUniversity of Pittsburgh
bSimon Business School, University of Rochester
cBooth School of Business, University of Chicago
dKU School of Business, University of Kansas

July 14, 2023

Abstract

This paper examines competition between supermarkets as a dynamic discrete game between heterogeneous players. We focus on the overall impact of Wal-Mart’s entry on incumbent supermarket firms, quantifying the effects on prices, producer surplus, consumer welfare and overall competitive structure. Employing a thirteen-year panel dataset of store level observations that includes every supermarket firm operating in the United States alongside the rapid proliferation of Wal-Mart Supercenters, we propose and estimate a dynamic structural model of chain level competition in which incumbent firms choose each period whether to add or subtract stores or exit the market entirely, and potential entrants choose whether or not to enter. Product market competition is modeled as a discrete-choice demand system, incorporating detailed information on prices and characteristics of chains, as well as unobserved heterogeneity in chain-level quality. Our estimation approach combines two-step estimation techniques with a novel random forest based value function approximation algorithm to accommodate the high-dimensional structure of the underlying state space.

Keywords: Retail Grocery, Dynamic Oligopoly, Value Function Approximation, Machine Learning, Random Forest

*The authors would like to thank seminar participants at Cornell, Duke, Harvard, Northwestern, Penn State, the Federal Reserve, the Federal Trade Commission, the Department of Justice, and the AEA winter meetings. Any remaining errors and omissions are our own.
1 Introduction

This paper examines competition between supermarkets as a dynamic discrete game between heterogeneous players. We focus on the overall impact of Wal-Mart’s entry on incumbent supermarket firms, quantifying the effects on prices, producer surplus, consumer welfare and overall competitive structure. Employing a thirteen-year panel dataset of store level observations that includes every supermarket firm operating in the United States alongside the rapid proliferation of Wal-Mart Supercenters, we propose and estimate a dynamic structural model of chain level competition in which incumbent firms choose each period whether to add or subtract stores or exit the market entirely, and potential entrants choose whether or not to enter. Product market competition is modeled as a discrete-choice demand system, incorporating detailed information on prices and characteristics of chains, as well as unobserved heterogeneity in chain-level quality.

The theoretical framework proposed in this paper is based on the Markov perfect equilibrium (MPE) framework of Ericson and Pakes (1995), in which firms make competitive investments that increase the quality of their products. In the context of retail competition, in which firms operate a chain of individual stores, quality is a function of the total number of stores operated by each firm, the individual characteristics of their stores, and their overall retail format (conventional supermarket or supercenter). Allowing firms to adjust all of these features independently would yield an intractably complex dynamic control problem. Instead, our strategy is to focus on a single dimension of quality (store density) and allow firms to differ by format (supermarket or supercenter). Product market competition is modeled using a discrete choice model of demand, in which firms may also differ by an additional feature of overall firm quality that is fixed over time. We assume that the economically relevant features of the industry can be encoded into a state vector that includes each firm’s store density, its overall format, and its quality level. Firms receive state dependent payoffs in the product market and influence the evolution of the state vector through their entry, exit, and investment decisions. In particular, incumbent firms can adjust their chain size
each period by either opening new stores, closing existing ones, or even exiting the market entirely. One potential entrants can enter into each format de novo every period. Equilibrium obtains when all firms choose strategies that maximize their expected discounted profits, given the expected actions of their rivals.

We estimate this model of competition using a detailed panel dataset that follows the entire supermarket industry over thirteen consecutive periods (years). Our empirical framework extends the two-step procedure proposed by Aguirregabiria and Mira (2007) by incorporating a novel value function approximation algorithm to tackle the large scale of the underlying state space. In the first step, we recover the firm’s policy functions governing entry, exit, and investment. These functions characterize firms beliefs regarding the evolution of the common state variables and the actions of their competitors. We also estimate the per-period payoff that each firm receives as a function of the current state. In the second step, we use the structure of the dynamic optimization problem to recover the parameters that make those beliefs consistent with an MPE. Following Hotz and Miller (1993), this is accomplished by replacing the continuation values in the best response probability functions with inverted conditional choice probabilities (CCPs) that can be recovered non-parametrically from the data.

A challenge in our estimation stems from our large state space and rich choice set, which makes generating the continuation value computationally burdensome. With the array of continuous variables that describe the current state facing each player in the market, which is further enhanced by an adjustable number of players each round, current methods proposed in the dynamic games literature proved insufficient. To this end, we extend the dynamic games literature by developing a new estimation strategy in which the value function is approximated using a combination of state aggregation and prediction/interpolation using the structure of a regression forest. The flexible structure of the forest allows us to capture the highly nonlinear and discontinuous surface of our discrete game’s value function in a data adaptive manner. Our proposed method leverages advances in machine learning to
create a data-adaptive kernel weighed projection of the continuation value.\footnote{The use of data-adaptive kernels is not new in the machine learning literature, as they have been employed in survival analysis Hothorn et al. (2004), quantile regressions Meinshausen and Ridgeway (2006), and, most recently, the causal forest Wager and Athey (2018).} By using the adaptive, nearest-neighbor design of the regression forest to pre-specify the relationship of observed, or calculated, state variables, we are able to tie the current period’s guess of the continuation value to any combination of observed state variables that appear one period ahead. In essence, our estimation approach allows us to generate and then freeze a random forest for updating the continuation value in a similar manner as Crawford and Shum (2005) or Sweeting (2013), but avoiding the use of a restrictive linear form for the mapping from basis functions to outcomes.

We build upon a rich literature on the estimation of dynamic discrete choice and dynamic games that includes the seminal methodological contributions of Aguirregabiria and Mira (2007), Bajari et al. (2007), Pakes et al. (2007) and Pesendorfer and Schmidt-Dengler (2007), as well as the more application oriented papers of Ryan (2012), Collard-Wexler (2013), Dunne et al. (2013), Barwick and Pathak (2015), Fowlie et al. (2016), Kalouptsidi (2018) and Hollenbeck (2017).\footnote{For an overview of the rich empirical literature that has developed over the past two decades, see Aguirregabiria et al. (2021).}

We also connect to the literature that considers supermarket competition, and the impact of Walmart on retailing more specifically. Important contributions include Foster et al. (2006); Basker and Noel (2009); Hausman and Leibtag (2007); Holmes (2011); Ellickson and Grieco (2013); Arcidiacono et al. (2016, 2020); Thomassen et al. (2017); Lagakos (2016); Atkin et al. (2018); Handbury (2021).

We find that Supercenters enjoy a cost advantage in building new stores within an established location. However, the Supercenter pays a sizeable up-front fixed cost to enter a new market. This is not surprising, as Supercenters often rely on well-organized distribution networks to enhance their cost positions. Through our counterfactual analysis, we find that markets do concentrate in a scenario where Supercenters are allowed free rein to grow.
the scenario where Supercenters are banned, we see fiercer competition among supermarkets, where smaller supermarkets are allowed to survive. That said, even with the greater amount of competition in the scenario with only supermarkets, the estimated consumer surplus is marketed lower compared to the one where Supercenters are allowed. This occurs for two primary reasons. First, the technological superiority of the Supercenter format is to the benefit of the consumer. Second, the investment in gaining a lower marginal cost position suppressed prices in the market containing Supercenters, and these lower prices paid by the consumers are of great benefit. As we show, the customers value the trade-off of fewer options as being less important than having access to the dominant technology and lower prices in this industry.

The paper is organized as follows. Section 2 describes the construction of the dataset. Section 3 describes the theoretical framework. The empirical framework is described in Section 4. The results of the first and second steps of the estimation are presented in Section 5, while the results of the policy experiments are contained in Section 6. Section 7 concludes.

2 Data

The data for the supermarket industry are constructed from yearly snapshots of the Trade Dimension’s Retail Tenant Database (RTD) spanning the years 1994 to 2006, while market specific population levels and growth rates are drawn from the US Census. The RTD includes information on every supermarket and supercenter operating in the US. The (establishment level) definition of a supermarket employed by Trade Dimensions is the government and industry standard: a store selling a full line of food products and generating at least $2 million in yearly revenues. Every outlet of all the major US supermarket chains is well above this threshold, as are all Walmart supercenters.

Information on average weekly volume, store size, number of checkouts, number of em-

\footnote{\textit{Foodstores with less than $2 million in revenues are classified as convenience stores and are not included in the dataset. Firms in this segment operate very small stores and compete with only the smallest grocery stores.}}
ployees (full time equivalents), and the overall format of the store (e.g. Supercenter or conventional supermarket) is gathered through quarterly surveys sent to store managers. These surveys are then compared with similar surveys given to the principal food broker assigned to each store and further verified via repeated phone calls. Each store is assigned a unique identifier code that remains with the store regardless of ownership, which we used to construct the overall store panel. In addition, each store has a unique firm code, which we used to identify the ultimate owner. The availability of reliable firm identifiers is critical in the supermarket industry, since parent firms will often operate stores under several “flag names,” especially when the stores have been acquired by merger. To avoid problems of false exits and entries, we treat stores acquired in a merger as having always belonged to their final owner. Also, when a firm is taken private or bought out by a public holding company, we do not treat the event as an entry (or exit).

Previous empirical studies of the supermarket industry (Ellickson (2007), Smith (2004)) suggest dividing the retail grocery market into two distinct submarkets: supermarkets and grocery stores. Supermarkets compete in a tight regional oligopoly that is not a significant substitute to the much smaller and highly fragmented grocery segment. Furthermore, the number of firms in these oligopolies do not increase with market size, yielding an equilibrium firm count that is apparently not impacted by population size or growth. The RTD includes information on both types of firms. Since we are primarily concerned with competition between retail oligopolists and require a market structure that is stationary, we focus only on the “top” firms in each market. Following standard practice, we define a local market here to be a US Metropolitan Statistical Area (MSA). We then include in our panel only those firms that served at least 5% of the market in which they operated in at least one period. Because the top supermarket firms do not compete significantly with the grocery firms in the fringe, this should not introduce any selection problems.4

The discrete choice model we use to characterize product market competition requires us

4Ellickson (2006) and Smith (2004) both present empirical results that support the separate submarkets claim.
to specify and collect data on the sales of the outside good. Obvious consumer alternatives to supermarkets include grocery stores, convenience stores, liquor stores, restaurants, and cafeterias. Therefore, we assume that total sales of the outside good are equal to the combined sales of all food and beverage stores (NAICS 445 - of which supermarkets are a subset) and all food service and drinking establishments (NAICS 772) less the sales accounted for by supermarkets alone. Data on total sales is taken from the 1997 Census of Retail Trade. To construct the share of the outside good, we use the Census dataset to construct an MSA specific multiplier characterizing the ratio of total sales in both categories (445 and 772) to total sales in supermarkets alone (NAICS 44511). We then use this multiplier to impute the total sales in both categories for each MSA in our dataset, using the observed revenue of the supermarkets as our baseline measure of sales. We are implicitly assuming that the ratio is constant over time.

Estimating this demand system also requires data on firm level prices, which we acquired from the American Chamber of Commerce Researchers Association (ACCRA). The ACCRA collects data from over 250 U.S. towns and cities on the prices of various retail products (26 of which are grocery items) for use in the construction of their Cost of Living Index. The ACCRA sends representatives to several supermarkets in each geographic market with the goal of collecting a representative sample of prices at the major chains. They are given a specific list of products for which to collect individual prices (e.g. 50 oz. Cascade dishwashing powder). We purchased their disaggregated dataset, so we observe the store name and individual prices for each product. We then use these individual prices to construct a price index (using the same weights employed by ACCRA) for each store in their dataset that is inflated to match average weekly grocery expenditures, as reported by the BLS. Since we are modeling competition at the firm level (and assuming prices are set at that level as well), we then aggregated these indices up to the level of the firm (in each market) and matched them to the corresponding firms in our panel, yielding a total of 649 MSA/firm level observations on price. Since ACCRA only began recording the names of the individual stores in 2004, we
have prices for only a single period. Summary statistics are provided in Table 1.

Note that Walmart supercenters are almost twice as large as the stores operated by supermarket firms, with three times as many checkouts. Store size here is grocery space, but checkouts are the total for the store. Supermarket chains operate almost three times as many stores per market as Walmart supercenters, but capture roughly the same share of the market. Walmart supercenters are about 14% cheaper than conventional supermarkets, which is consistent with prior studies (Hausman and Leibtag, 2007; Basker and Noel, 2009; Arcidiacono et al., 2020).

Table 1: Summary Statistics

<table>
<thead>
<tr>
<th>Format</th>
<th>Supercenter</th>
<th>Supermarket</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store Size</td>
<td>65.2 (22.8)</td>
<td>36.3 (15.2)</td>
</tr>
<tr>
<td>Checkouts</td>
<td>29.4 (6.36)</td>
<td>10.1 (3.94)</td>
</tr>
<tr>
<td>Stores per Market</td>
<td>3.64 (5.48)</td>
<td>10.4 (22.6)</td>
</tr>
<tr>
<td>Market Share</td>
<td>16.6 (13.9)</td>
<td>15.1 (10.2)</td>
</tr>
<tr>
<td>Basket Price</td>
<td>82.08 (6.31)</td>
<td>95.66 (10.28)</td>
</tr>
<tr>
<td>Firms per MSA</td>
<td>.70 (.64)</td>
<td>4.38 (1.42)</td>
</tr>
</tbody>
</table>

Store size is in 1000s of square feet.

Table 2: Action Frequencies

<table>
<thead>
<tr>
<th>Potential Entrants</th>
<th>Don’t Enter</th>
<th>Build 1</th>
<th>Build 2</th>
<th>Build 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Supercenter</td>
<td>93.5%</td>
<td>5.3%</td>
<td>1.2%</td>
</tr>
<tr>
<td></td>
<td>Supermarket</td>
<td>92.9%</td>
<td>6.1%</td>
<td>.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Incumbents</th>
<th>Supercenter</th>
<th>1%</th>
<th>2.7%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Supermarket</td>
<td>2.5%</td>
<td>6.3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Potential Entrants</th>
<th>Exit</th>
<th>Close 2+</th>
<th>Close 1</th>
<th>Do Nothing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
<td>2.5%</td>
<td>6.3%</td>
<td>71%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Open 1</th>
<th>Open 2+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18%</td>
<td>5.2%</td>
</tr>
</tbody>
</table>
3 A Model of Retail Chain Competition

The discrete game structure and notation employed here closely follows Sweeting (2013), with differences noted as they arise. We characterize the overall game structure at a fairly high level here, providing the more specific details that map to the estimation in later sections.

In each of \(m = 1, \ldots, M \) markets (MSAs), grocery chains (both supermarkets and supercenters) indexed \(f = 1, \ldots, F_m \) play a discrete time game over periods \(t = 1, \ldots, T \). Although almost all chains complete in more than one market, we assume that these markets are independent (i.e. there are no benefits from common ownership or multi-market contact). Markets are differentiated by two common states variables characterizing their population levels (\(\text{pop}_m \)) and growth rates (\(g_m \)). These are taken to be exogenous, deterministic and commonly observed.

Firms compete by offering a basket of groceries to each consumer in the market. These firm-level baskets are differentiated by price and by the characteristics of the chains that provide them. The characteristics that define each chain are its format (either supercenter or supermarket), the number of stores it operates per capita (a form of capacity, as well as a proxy for the travel distance to its consumer base), and its overall quality level (to be inferred from the demand system). Chains are assumed to set market-level prices to maximize per-period profit.\(^5\) Prices are therefore determined by the static Nash equilibrium in the product market. The collection of state variables, commonly observed by all market participants, is denoted \(M_{jft} \), where \(j \) distinguishes a firm \(f \)'s state in period \(t \).

The per-period profits that firms earn are denoted \(\pi^w(M_{jft}) \). The full per-period flow profit function includes the variable profits from product market competition, as well as the cost of adjusting the state (e.g., by opening or closing stores) or exiting. These costs are denoted \(C(a) \), as they depend on the firm’s choice of action \(a \). Each firm also privately observes state variables (cost shocks) associated with opening and closing stores, which will

\(^5\)Hitsch et al. (2021) and DellaVigna and Gentzkow (2019) both present empirical results consistent with the market-level pricing assumption.
be described shortly. For each firm in each year in each market, the researcher directly
observes each firm’s format ($o \in SM, SC$), the number of stores it operates, the price it
charges in the product market and its total revenue. Each firm’s overall quality level will
be inferred from the estimated demand system and treated as observed (by firms and the
researcher) in the dynamic game. Marginal costs will also be inferred from the demand
system and the first order conditions of the static pricing game.

The timing of the game is as follows. Each period, all currently active (incumbent) firms
observe the current state (the market population and growth rate, the firm’s own store count,
quality level, and format, as well as those of its rivals), and decide whether to open additional
stores, close existing stores, maintain the current portfolio or exit the market entirely. The
number of new store openings is capped at two, as is the total number of closures (larger
changes are rarely observed). The choice set $A_f(M_{jft})$ depends on the current state, as a
firm with one store cannot choose to close two. Coupled with each action $a_{ft} \in A_f(M_{jft})$ is
a cost/payoff shock $\varepsilon_{ft}(a_{ft})$, which is privately observed by the focal firm and assumed to be
independent and identically distributed (iid) Type I Extreme Value, with scale parameter6 θ^ε
that accommodates heteroskedasticity by population and firm type via the following relation:

$$\theta^\varepsilon = \exp (\beta_1 \ast \ln(pop_m) + \beta_2 \ast SC_f) .$$

The flow profit of firm f in period t can then be written as

$$\pi_{ft}(a_{ft}, M_{jft}, \theta, \gamma) + \theta^\varepsilon \varepsilon_{ft}(a_{ft}) = \pi^v(M_{jft}, \gamma) - C(a_{ft})\theta^C + \theta^\varepsilon \varepsilon_{ft}(a_{ft})$$

(1)

where we are making use of the typical “time to build assumption” whereby variable profits
depend on the current state, adjustment costs are incurred in the current period t, and
changes to the state occur in the subsequent period $t+1$.

6The scale parameter is identified here since we observe (and condition upon) revenues when estimating
the parameters governing dynamic investments.
Two potential entrants (one of each format type) may also choose to enter the market in each period. Entrants may enter with either one or two stores and are assigned a quality draw from the (recovered and known) distribution of firm-level qualities (inferred from the estimated demand system). Because stores take a period to build, flow profits in the initial period include only the entry costs (and no current payoff). The entry costs are parameterized as a linear function of population and the number of stores initially opened. After making these choices (but before they are realized), each incumbent firm competes in the product market, earning variable profits given by \(\pi_{ft}(M_{jft}, \gamma) \), where \(\gamma \) is a parameter vector indexing the consumer utility function (to be specified below). Thus, each firm’s flow profits include the costs/payoffs of opening or closing stores (or choosing to exit), as well as their associated shocks, plus the variable profit from product market competition (per-period fixed costs are not identified and are therefore normalized to zero).^7

Assuming that firms play stationary Markov Perfect Nash Equilibria (MPNE), let the mapping from states to actions be denoted \(\Gamma_f : (M_{jft}, \varepsilon_{ft}) \rightarrow a_{ft} \). Firm \(f \)'s value in state \((M_{jft}, \varepsilon_{ft})\) when it employs an optimal strategy (and all rivals follow \(\Gamma \)) is given by:

\[
V_{f}^{\Gamma}(M_{jft}, \varepsilon_{ft}) = \max_{a \in A_{f}(M_{jft})} \left[\pi(a, M_{jft}) + \theta^{\varepsilon_{ft}}(a) \right]
\]

\[
+ \beta \int V_{f}^{\Gamma}(M_{jft+1}) g(M_{jft+1}|a, \Gamma_{-f}, M_{jft}) dM_{jft+1}
\]

where \(g(\cdot) \) is the transition kernel given choice \(a \) and rival strategies \(\Gamma_{-f} \) and \(V_{f}^{\Gamma}(M_{jft+1}) \) is the ex ante value function, obtained by integrating over the unobserved state variables

\[
V_{f}^{\Gamma}(M_{jft}) = \int V_{f}^{\Gamma}(M_{jft}, \varepsilon_{ft}) f(\varepsilon_{ft}) d\varepsilon_{ft}
\]

The distributional assumption on \(\varepsilon \) yields closed form solutions for the optimal strategy of

^7For more detail on the normalizations required for estimation, as well as subsequent counterfactual simulation and interpretation, of dynamic discrete games see Aguirregabiria and Suzuki (2014) and Kalouptsidi et al. (2021)
firm f:

$$P^G_{\Gamma f}(a, M_{jft}, \Gamma_{-f}) = \frac{\exp \left(\frac{v^G_{\Gamma f}(a, M_{jft}, \Gamma_{-f})}{\theta \epsilon} \right)}{\sum_{a'^{\prime} \in A_f(M_{jft})} \exp \left(\frac{v^G_{\Gamma f}(a'^{\prime}, M_{jft}, \Gamma_{-f})}{\theta \epsilon} \right)}$$

(4)

where $v^G_{\Gamma f}(a, M_{jft}, \Gamma_{-f})$ is the choice specific value function (net of shock)

$$v^G_{\Gamma f}(a, M_{jft}, \Gamma_{-f}) = \pi(a, M_{jft})$$

+ $\beta \int \tilde{V}^G_{\Gamma f}(M_{jft+1}) g(M_{jft+1} | a, \Gamma_{-f}, M_{jft}) dM_{jft+1}$

(5)

Note that, given the Type 1 Extreme Value assumption for the private shocks, the ex ante value function can now be expressed via the well-known log sum formula

$$\tilde{V}^G_{\Gamma f}(M_{jft}) = \theta \epsilon \ln \left(\sum_{a'^{\prime} \in A} \exp \left(\frac{v^G_{\Gamma f}(a'^{\prime}, M_{jft}, \Gamma_{-f})}{\theta \epsilon} \right) \right) + \theta \epsilon \lambda^{Euler}$$

(6)

where λ^{Euler} is Euler’s constant.

A Markov Perfect Equilibrium of the discrete game is characterized by a fixed point of the collection of best response probability functions (4) of all four player types: incumbent supermarkets and supercenters, as well as one potential entrant each period of each type. While existence of equilibria follows from Brouwer’s fixed point theorem, uniqueness is not guaranteed. In what follows, we follow the bulk of the empirical literature in assuming that a unique equilibrium is played in the data and can then be conditioned upon directly as part of our two-step estimation procedure.

4 Estimation Overview

The estimation of single agent dynamic discrete choice problems typically proceeds by matching the model implied conditional choice probabilities (CCPs), represented above by equation (4), to the discrete actions (choices) observed in the data, using either a GMM or (pseudo)
MLE criterion. Because the choice specific value functions that appear on the right-hand side of (4) are not economic primitives, they must either be solved for using a nested fixed point routine as in Rust (1987) or replaced by a sample analog as part of a two-step estimation procedure (as in Hotz and Miller (1993) or Hotz et al. (1994)).

Dynamic discrete games raise additional complications due to the doubly nested structure induced by the future value and rival action components of the agent’s decision problem. A clever solution to this computational problem involves replacing the CCPs of rival firms with sample analogs, which effectively turns the estimation problem into a collection of single-agent games against nature.\(^8\) This approach has been implemented successfully in many contexts. However, the high-dimensional nature of our underlying state space, arising from the large number of actual and potential players, as well as the continuous nature of some of the state variables (e.g. firm quality and store density), makes a direct application of these existing methods impossible here. A scalable approach is also need to perform the back-end counterfactuals that constitute the key substantive contribution of the paper.

Our proposed alternative estimation approach involves combining a two-step (CCP-based) strategy for handling rivals actions (i.e. performing the integration on the right hand side of equation (5)) with value function iteration via approximation to solve the individual dynamic programing problems (i.e. by interpolating the integrated value function on points outside of the (finite) grid on which the full problem is solved).\(^9\) Exploiting recent advances in machine learning, we build our approximation to the value function in two steps.

First, we use forward simulation of actions and payoffs to generate an analog of the “ground

\(^8\)This method was pioneered in a series of papers (Aguirregabiria and Mira, 2007; Bajari et al., 2007; Pakes et al., 2007; Pesendorfer and Schmidt-Dengler, 2007) following a strategy originally proposed by Rust (1994).

\(^9\) Value function approximation was originally proposed in Bellman et al. (1963) and subsequently built upon and extended by many authors (see Judd (1998) and Powell (2007)). Here, we use the value function iteration approach developed for a single-agent problem in Crawford and Shum (2005) in a game context similar to Sweeting (2013). One key difference is that Sweeting (2013) employed a parametric policy iteration approach based on Benitez-Silva et al. (2000), while we use value function interpolation and iteration instead. Another distinction is that we use a random forest for function approximation rather than a linear estimator. Other value function approximation approaches have been employed successfully by many authors, including Keane and Wolpin (1994), Barwick and Pathak (2015), Fowlie et al. (2016) and Kalouptsidi (2018), often using a Lasso approach to select over a set of basis functions defined by polynomial or series approximation.
truth” upon which to anchor the structure of a random forest. We then fit a regression forest to these outcomes to identify the “nearest neighbors” to each point in the finite grid using the data-adaptive kernel induced by the forest routine. This structure is then frozen, and the resulting partitions and partition weights are used in the value function iteration procedure. The key innovation here lies in using the forward simulated payoff functions to anchor the overall “shape” of the resulting forest, and then freezing that structure in place for the iterative updating process (the nested fixed point routine). In other words, we update the weighted average, but not the weights or groupings. Avoiding the high degree of smoothing typically associated with series approximation should allow the approximated surface to better reflect the nonlinearities and discontinuous “jumps” in the value function that are often observed in discrete games (Doraszelski and Pakes, 2007).

At a high level, our estimation approach proceeds as follows. We first recover estimates of the parameters characterizing the demand system using a standard discrete choice demand approach (Berry, 1994). Inverting the first order conditions of the static pricing problem provides estimates of the marginal costs of production, which are projected down onto store density and a dummy for format type (for extrapolation purposes). From these primitives, we can then construct estimates of variable profit for any point in the state space (including both points observed directly in the data and points outside of its support). These are used when constructing estimates of the flow profit term on the right hand side of equation (5), as well in generating the outcomes needed to determine the structure of the regression forest.

We turn next to recovering an initial estimate of the partitions and partition weights that govern the random forest approximation to the value function surface. To do so, we first specify a finite grid of points on the natural state space upon which to solve the value function exactly. We next define a collection of aggregate states or “features” that summarize the key aspects of the observed market structure at a given point in the state space from the perspective of a focal firm. Following the logic of Powell (2007), these are chosen to reflect moments or features of the underlying “natural” states then act as “basis functions”
for the prediction problem. We then forward simulate payoffs for each focal firm on the grid
to recover an initial empirical analog of the value function at each point on the grid. These
values are the outcomes that the random forest is tasked with predicting. The output of this
prediction exercise is a collection of partitions of the aggregate state space, along with fixed
partition weights, than can then be used to predict values at points outside the grid.

We next move to the estimation of the dynamic structural parameters, freezing the
partitions and partition weights, but updating the values on the grid using the structure
of the Bellman equation (the value function iteration process) and the CCPs of rival players.
This procedure is nested inside a pseudo MLE routine to iteratively update the structural
parameters, and repeated until the full process converges. Finally, the entire procedure is
repeated once more to incorporate the resulting cost parameters into the initial forward
simulation step to further refine the structure of the forest to better capture the full shape
of the value function. Bootstrapped standard errors are computed by subsampling markets
during this final step.

The estimation of the dynamic game proceeds in two main stages. In the first stage, or
“set-up” step, we compile several different functions and approximations that characterize
demand and static product competition, as well as the initial partitions of the aggregate
state space and partition weights. In this stage, the static parameters that define product
market competition are recovered, a collection of aggregate states is defined, the reduced-
form CCPs are estimated, three approximation grids are specified, and the distribution of
possible one-period-ahead states is enumerated. Generating these functions in this initial
stage dramatically reduces the computation time of the second (main estimation) stage. In
the second stage, the dynamic parameters are recovered using value function approximation
coupled to a standard pseudo MLE routine. We enumerate, in greater detail, each step of
the estimation process in what follows.
4.1 Estimation of the Static Parameters: Demand, Marginal Cost and Variable Profits

The first stage of our estimation procedure involves recovering the parameters that govern the demand system (using the observed revenues and prices), inverting the first order conditions to infer the marginal costs of each firm, and then constructing a measure of variable profits for every market/firm combination observed in the full dataset.

We begin by assuming that an individual consumer \(i \)’s utility for a weekly basket of groceries purchased at chain \(f \) in week \(t \) is given by:

\[
\begin{align*}
 u_{ift} &= \gamma_{pm} + \gamma_{pm} \cdot SC_f + \gamma_{pm} \cdot \frac{stores_{ft}}{pop_t} - \gamma_{pm} \cdot p_{ft} + \xi_f + \Delta \xi_{ft} + \varepsilon_{pm}^{ift}
\end{align*}
\]

(7)

where \(SC_f \) is a supercenter (firm) indicator, \(\frac{stores_{ft}}{pop_t} \) is the “store density” of the firm (a proxy for travel distance), \(p_{ft} \) is the price of a basket of groceries, \(\xi_f \) is the latent quality of firm \(f \), \(\Delta \xi_{ft} \) is a transient shock to this quality, and \(\varepsilon_{pm}^{ift} \) is the usual Type I Extreme Value “demand shock”. Given this simple logit structure, the firm level market shares take on the familiar analytic forms, and the first order conditions of the static pricing problem can be inverted to obtain estimates of the marginal costs associated with each chain-level product, namely a weekly basket of groceries. The estimated costs are then projected onto firm characteristics (state variables) as follows:

\[
\begin{align*}
 \ln(mc_{ft}) &= \gamma_{mc} + \gamma_{mc} \cdot SC_f + \gamma_{mc} \cdot \frac{stores_{ft}}{pop_t} + \varepsilon_{mc}^{ft}
 \end{align*}
\]

(8)

Finally, the combination of these estimates can be combined into variable profits, which are constructed as:

\[
\begin{align*}
 \pi_{ft} = (p_{ft} - mc_{ft}) \cdot s_{ft} \cdot pop_t
 \end{align*}
\]

(9)

where the dependence of price, cost and market share on the current state is suppressed for brevity. Weekly profits are scaled up to the yearly level to match the decision frequency of
the discrete game.

The demand system is estimated on the observed data using standard methods (i.e. 2SLS using Hausman-Nevo style instruments for price). One limitation is that we only observe prices for a subset of firms in a single period (2004) so the first stage of the usual 2SLS procedure is performed on this subset alone while the second stage uses the full set of firms and periods. Once demand estimation is complete, the system is then inverted to recover estimates of marginal costs (for the period and firms for which prices are observed). These costs are then projected down onto the two state variables and projected out to the full set of firms and periods. The construction of variable profits then follows directly.

4.2 Definition of Aggregate States

Recall that our approach to approximating the value functions, which then feed into the computation of the structural CCPs, involves the use of both aggregate state “moments” (for dimension reduction) and a regression forest (for projection and interpolation, as well as dimension reduction). The set of aggregate states was chosen to reflect the key components of the natural state space that best capture both profits and valuations.

There are a total of 16 aggregate states or “features” used in our analysis. The full list of these states is displayed in Table 3, though we highlight a few here to illustrate how these states help describe a firm’s profit potential and, thus, inform their future actions. First, we include a measure of chain-level profit, since this is the most salient indicator of how well the chain performs within the market. We construct chain-level profits from the demand and cost parameters recovered in our static demand estimation. Of course, different chains may arrive at the same profit outcome for quite distinct reasons. For example, a large chain operating in a small market versus a small chain operating in a large market could each have the same profit. Therefore, we also construct “aggregate states” around how much better or worse the focal firm is compared to the best and worst quality levels of other competitors in the market. Similarly, we calculate the differential in the number of stores the focal chain
currently has versus the market’s biggest and small chains. We include these measures, along with the average levels of state variables, the population size, and the market’s growth rate as the remaining aggregates.
4.3 Profit Projection

Recall that a key component of our approximation procedure involves training a regression forest to capture the shape of the value function (through the forest’s partition and weight structure), which is then used for the structural estimation of the dynamic cost parameters. As a precursor to this exercise, we must first project our estimates of variable profits to many candidate points in the state space, including a large number that fall outside of the support of the data. To do so, we first create a large grid of points that includes both the data and several perturbations off its support. We then compute the exact variable profit outcome for every point in the grid (by solving for the Nash equilibrium of each market configuration) and fit a regression forest to these observed outcomes. Because market shares also appear as one of the aggregate states, we perform a similar procedure using the computed shares as the outcome. Further details regarding the estimation procedures and resulting estimates and fit are provided in the Appendix.

4.4 Estimating the Reduced Form CCPs and Training the Regression Forest

Estimation of the CCPs

As noted earlier, a key component to reducing the computational burden of estimating dynamic games involves using reduced form estimates of the CCPs to describe rival firms’ actions in a given market (employed when evaluating the integral on the right hand side of equation (5)). We estimate these reduced form CCPs using flexible multinomial logit models, performed separately by chain type (supermarket or supercenter) and activity status (entrant or incumbent). In each logit model, we include, as appropriate, the 16 state aggregates to maintain consistency between the reduced-form CCPs and the structure of our other auxiliary models. In the supermarket incumbent case, we have to condition the flexible multinominal logit on the current number of stores operated by the chain during period \(t \). Recall that
Table 3: Description of Feature Variables Used in Regression Forest Approximations

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Opp. Quality</td>
<td>Average quality metric for competitors in the market</td>
</tr>
<tr>
<td>Avg. Opp. Stores</td>
<td>Average number of stores owned by competitor chains in the market</td>
</tr>
<tr>
<td>Density</td>
<td>Focal Chain’s number of stores divided by the population of the market</td>
</tr>
<tr>
<td>Grow</td>
<td>The Growth Rate of the market</td>
</tr>
<tr>
<td>Market Share</td>
<td>Calculated market share from the static demand model</td>
</tr>
<tr>
<td>Num SC</td>
<td>Number of SuperCenter chains in the market</td>
</tr>
<tr>
<td>Num SM</td>
<td>Total Number of SuperMarket chains in the market</td>
</tr>
<tr>
<td>Own Q - max Opp. Q</td>
<td>Own Quality Metric minus the highest quality metric for a competitor in the market</td>
</tr>
<tr>
<td>Own Q - min Opp. Q</td>
<td>Own Quality Metric minus the lowest quality metric for a competitor in the market</td>
</tr>
<tr>
<td>Own Quality</td>
<td>Own Quality Metric, obtained from the static demand estimation</td>
</tr>
<tr>
<td>Own Store - max Opp. Store</td>
<td>Total Number of Stores with the chain minus the number of stores held by the largest chain in the market</td>
</tr>
<tr>
<td>Own Store - min Opp. Store</td>
<td>Total Number of Stores with the chain minus the number of stores held by the smallest chain in the market</td>
</tr>
<tr>
<td>Own Stores</td>
<td>Total Number of Stores with the chain</td>
</tr>
<tr>
<td>Pop</td>
<td>Number of people in the market, scaled by 10,000</td>
</tr>
<tr>
<td>Profit</td>
<td>Calculated yearly profit from the static demand model</td>
</tr>
<tr>
<td>SC Dum</td>
<td>Dummy Variable if the Chain is a SuperCenter</td>
</tr>
</tbody>
</table>
firms are allowed to open stores, close stores, do nothing, or exit the market entirely. Thus, we condition the actions a supermarket incumbent can take based on the current number of stores they are operating within the market. For example, if the supermarket incumbent has 1 store, then their options are: open two stores, open one store, do nothing, and close one store. We add flexibility to the multinomial logit by including the full set of state aggregates, as well as quadratic term on the current period profit outcome.

Training the Forests

The final component of the set-up stage is training the regression forest that will serve as the basis of the value function approximation utilized in the nested fixed point estimation of the dynamic parameters. We start with an object that serves as an approximate measure of the ex-ante value function of firm j, $V_j^{\Gamma}(M_{jft}^{agg})$, where M_{jft}^{agg} is the collection of state aggregates detailed earlier. This serves as the target variable to train our regression forest.

The ex ante value function is approximated by a bootstrapped ensemble of regression trees, which can be represented as:

$$
\hat{V}_j^{\Gamma}(M_{jft}^{agg}) \approx \sum_{n=1}^{N} \alpha_n(M_{jft}^{agg}) \hat{\lambda}_n
$$

where

$$
\alpha_n(X) = \frac{\sum_{b=1}^{B} 1(X \in R_{n,b})}{\sum_{n=1}^{N} \sum_{b=1}^{B} 1(X \in R_{n,b})}
$$

and in which $1(X \in R_{n,b})$ is an indicator for being in region R_n (one of N partitions of the regressor space) in tree b, and $\hat{\lambda}_n$ is the simulated value for observation n that the forest is grown on initially. α_n is the data adaptive kernel, representing the number of times a given grid point described by the vector of M_{jft}^{agg} falls in a leaf, or region, with grid point n across all bootstrapped sample trees b in a forest of size B. The summation is then scaled by the total number of all grid points n in N that have appeared in the same region as M_{jft}^{agg} across a forest of size B. Thus, grid points that are closer in multi-dimensional space to those seen in M_{jft}^{agg} are given higher weight in creating the approximation of $V_j^{\Gamma}(M_{jft}^{agg})$ compared
to those that have never resided in a leaf. Thus, this method also helps shield against the potential bias that may stem from outlying points on the simulated grid.

To mitigate overfitting bias and aid in convergence, we learn the “structure” of the value function outside the dynamic estimation. We start with simulating 2,400 markets for the supermarkets and 1,200 markets for the supercenters. In each market, we define one firm as the ”focal” firm used to define each grid point. For each such firm (grid point), we calculate its profits in the current period and include the current guess at the structural cost parameters.\(^{10}\) Then, for each action, we compute the CCPs of all firms in the market, including potential entrants, and forward simulate actions of the other firms in the market, holding fixed the focal firm’s current choice action. We forward simulate out 10 periods, conditional on each potential action taken by the focal firm. In the 11th period, we assume the focal firm’s current profits become a perpetuity. Using the fixed discount rate, we discount all the cash flow streams back to the current period to approximate the continuation value of the specific choice. Therefore, we can then combine the current period profit, the cost of action, and the approximate continuation value of each choice into an initial approximation of the choice specific value function for a given focal firm outside of estimation. We average the computed value function over 20 simulations. The regression forest is then grown on this approximate value function surface with the full set of 16 state aggregates as our feature variables. Once estimated, we hold this structure constant across the finally stage estimation and, as outlined earlier, use the partitions and subsequent sample weights during our value function iteration/interpolation stage.

Finally, we enumerate and retain the set of one-period-ahead states for use in computing the integration over rival actions. Given the reduced form CCPs calculated earlier, we are able to probabilistically enumerate the occurrence of each possible future state for a given market. We retain any market combination that has a probability of occurring of at least

\(^{10}\)We start with initializing these costs to be zero and estimate the cost parameters in the second stage accordingly. For our final estimation, we update these costs with our prior estimates and proceed accordingly.
and discard the rest to reduce the computational burden.

4.4.1 Recovery of Dynamic Parameters

After computing the various steps in the “Set-up” stage, we can now proceed with estimating the structural parameters of our dynamic game. We recover several cost parameters, conditional on both the chain-type (supermarket or supercenter) and chain’s state in the market (entrant or incumbent). In addition, we parameterize the scale parameter as a function of market population and chain-type.

Our estimation procedure targets seven key structural parameters: opening costs of a store for an incumbent supermarket; closing costs of a store for an incumbent supermarket; opening costs of a store for an incumbent supercenter; entry cost, scaled by population, for an entrant supermarket; entry cost, scaled by population, for an entrant supercenter; and the two parameters that index the scaling factor. We collect these parameters into a single vector, \(\theta \).

Our final structural estimation occurs in the following steps. For a given value of \(\theta_i \), we compute the flow profit for each point contained within our value function approximation grid. This requires updating the current guess of the value function based on the current value of \(\theta \) and keeping the current period profit and beliefs regarding rivals’ actions fixed. Once a flow profit is calculated with the new value of \(\theta \), we then solve for a new approximation of the value function for each point in our simulated grid through value function iteration and interpolation via the Bellman equation (equations (6) and (5)) along with the calculated sample weights. Once the maximum difference between the current and prior iterations value function approximation is within a tolerance level, \(1e^{-3} \) in our estimation, we stop updating the value function. We now have the mapping of future states to the guesses on our simulated grid of 2,400 points for the supermarkets and 1,200 points for the supercenters.

With these approximations of the value function defined for our grid points and a mapping

\[\text{For the states retained; we update their probability of occurrence by re-scaling so all future probability for a given focal firm at time } t \text{ sum to 1.} \]
between those points and all one-period-ahead states, we can then compute the choice specific value function for each option a chain \(j \) might choose. These choice specific value functions are then a combination of: the current period profit for \(j \), the cost of their choice from \(\theta \), and the approximation of the value function based on the firm’s choice. This allows us to compute the implied CCPs using equation (4).

We then apply a pseudo-maximum likelihood routine to match our implied CCPs to the actual choices in the data. If convergence is met through the use of an optimizer, the estimation stops, and \(\theta \) are recovered sufficiently. If not, we start back at the initial part of this stage and cycle through the steps once again. Given that we use auxiliary functions to approximate constructs in our second-stage estimation, we use bootstrapping, by markets, to compute standard errors.

5 Estimation Results

We now discuss our structural estimates, starting with the parameters that govern the static portion of the problem (demand, marginal costs and variable profits). We then turn to the dynamic parameters that govern strategic investment.

5.1 Static Parameters

The parameter estimates of the conditional indirect utility function are as follows

\[
\tilde{u}_{itf} = 1.64 + 0.063 \cdot SC_f + 5.60 \cdot \frac{stores_{ft}}{pop_t} - 0.049 \cdot p_{ft}, \quad R^2 = 0.49
\]

and include 18,889 observations over 1,762 firms. The corresponding marginal cost projections are

\[
\ln(\tilde{mc}_{ft}) = 4.32 + 0.237 \cdot SC_f - 0.301 \cdot \frac{stores_{ft}}{pop_t}, \quad R^2 = 0.27
\]

and include 651 observations.
The parameters of the utility function indicate that consumers have a mild preference for the supercenter format and a strong preference for chains with a greater density of stores. The negative price coefficient translates into an average own elasticity of -3.53 and an average price-cost margin \(p - c \) of 28.3%. Note that these implied margins are closely in line with existing estimates.\(^{12}\)

The cost estimates imply that supercenters enjoy a strong cost advantage in the product market: they face marginal costs that are on average 23.7% below those of the non-supercenters. This is somewhat mitigated by the impact of store density on marginal costs, since non-supercenters generally operate a larger number of stores in a given market.

5.2 Dynamic Parameters

Recall that the deterministic portion of the cost of opening new stores is given by \(\theta_{C_{\text{open}}} \), which depends on the chain’s format \(o \). A chain that opens one store receives \(\theta_{C_{\text{open}}} \), while a chain that opens two receives \(2 \cdot \theta_{C_{\text{open}}} \). Similarly, chains that close stores receive a payoff \(\theta_{C_{\text{close}}} \), which is similarly incremented from one to two. Finally, firms that exit receive \(\theta_{C_{\text{close}}} \) for each store they close when exiting (i.e., one increment for each remaining outlet).\(^{13}\) These costs are augmented further if the chain is an entrant, as they have to pay not only the cost of opening stores, but also an upfront entry cost. This entry fee reflects the cost of the firm setting up a network within the region and is scaled by the population size of the market. These entry costs are further differentiated by the chain’s format, either supermarket or supercenter.

We estimate these dynamic cost parameters on a subset of the data, including only markets with less than 350,000 consumers and fewer than 8 firms in operation. This restriction

\(^{12}\)Using detailed data on store level prices and costs for a U.S. grocery chain observed from 2004 to 2007, Stroebel and Vavra (2019) report average margins of roughly 31%. This corresponds quite closely with data from the Census’ Annual Retail Trade Survey, according to which average gross margins for grocery stores (NAICS 4451) over our period are 28.5%. Using the Dominick’s Finer Foods dataset for 1989-1994, Montgomery (1997) reports an average product-level gross margin of 25%. Finally, using data from the BLS, Nakamura (2008) reports store level margins of 28.3%.

\(^{13}\)Due to data limitations, we cannot estimate a closing/exit cost for the supercenters. Therefore, these are set to zero in our analysis.
is made for two reasons. First, the set of large markets is very sparse and heterogenous. Pooling them together with the much more common mid size cities would like lead to inappropriate extrapolations. The second reason is simply numerical tractability. Despite our efforts to reduce the computational burden, enumerating the possible actions of 8 or more players with continuous variables becomes intractable. As a result, our model focuses on 114 markets across the same time horizon. This results in over 6,000 observations in total for incumbents, where supermarkets naturally appear much more frequency than supercenters. All coefficients, except those attached to the scaling factor, are in $10 million dollar increments. All standard errors are computed by drawing 100 bootstrapped samples (at the market-level), where the first stage is kept fixed, and we re-sample the observations used in the dynamic estimation. Further, to expedite the bootstrap procedure, initial values are set to the overall parameter estimates. The table below contains the full set of parameter estimates.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>T-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supermarket Build One Store</td>
<td>-22.498</td>
<td>0.524</td>
<td>-42.915</td>
</tr>
<tr>
<td>Supermarket Close One Store</td>
<td>3.162</td>
<td>0.257</td>
<td>12.281</td>
</tr>
<tr>
<td>Supercenter Build One Store</td>
<td>-14.046</td>
<td>0.871</td>
<td>-16.132</td>
</tr>
<tr>
<td>Supermarket Entry Cost (scaled by population)</td>
<td>-0.16</td>
<td>0.037</td>
<td>-4.371</td>
</tr>
<tr>
<td>Supercenter Entry Cost (scaled by population)</td>
<td>-2.812</td>
<td>0.28</td>
<td>-10.05</td>
</tr>
<tr>
<td>Sigma - Log Population Size Coefficient</td>
<td>0.543</td>
<td>0.013</td>
<td>40.728</td>
</tr>
<tr>
<td>Sigma - Supercenter Dummy Variable</td>
<td>0.432</td>
<td>0.13</td>
<td>3.332</td>
</tr>
</tbody>
</table>

For the supermarket chains, the cost of an incumbent opening a single store is approximately $225 million dollars (t-stat of -42.915). If a supermarket chooses to close a store, they receive approximately $31.6 million dollars (t-stat of 12.821), or rather, the salvage cost of a supermarket is approximately one-seventh the cost of opening. This salvage value represents both the cost of liquidating the store, selling off any remaining items for salvage, and the discounted cash flow savings of not employing the staff for that location.

For the supercenter firms, the cost of an incumbent opening a single store is approximately $140 million dollars (t-stat of -16.132). This cost is over $70 million dollars lower than their
supermarket counterparts. This better cost position may reflect the fact that supercenters are often built on already established outlets as part of a conversion process. This pre-existing structure represents a considerable cost advantage when opening a supercenter. Recall that supercenters also face a much better variable cost position, as their margins on products sold are substantially higher than supermarkets.

Part of the supercenter cost advantage comes from meticulous planning and upfront costs established when the supercenter enters a market. We see that the cost per 10,000 people for a supermarket to enter a new market is approximately $1.6 million dollars (t-stat of -4.371). On the other hand, the supercenter’s fixed cost of entry is approximately $28.1 million dollars per 10,000 people (t-stat of -10.05). This upfront investment can be rationalized as the supercenter building their network and distribution hub within the region. Once established, they can exploit the cost savings borne from this upfront, fixed costs to have better margins and less costly store openings.

Finally, we see there is heteroscedasticity with respect to population size. As the population increases, there is much higher variation in the potential payouts for the firms, the coefficient on the logged population is $.543$ with a t-stat of 40.728. We also note that supercenters have a larger scale parameter than supermarkets, holding the population of a market fixed, as the dummy variable for supercenters is $.432$ with a t-stat of 3.332.

Before proceeding with a counterfactual analysis to uncover how the new format has impacted the market overall, it is worth discussing the degree to which our estimates of these structural costs coincide with expectations. Given that we have normalized fixed costs to zero, the cost per store should be interpreted as the store entry cost plus PDV of fixed costs for the lifetime of the store (Aguirregabiria and Suzuki, 2014). Recall that the estimated value for supermarkets is 225 million, while the estimate for supercenter firms is considerably lower, coming in at 140 million. Note that these are averages, not realizations conditional on choice. Factoring in the scale parameter and the relative frequency with which entry occurs, the typical cost paid would be closer to 170 million for supermarkets and $106
million for supercenters. The average scrap value for a supermarket is a more modest $33
million, with the typical price received closer to $73 million. Finally, de novo entry adds
$100 million to the cost of building the initial stores for supermarkets, and $500 million for
supercenters.

How reasonable are these numbers? Note that the average entering supermarket makes
approximately $13.7 million in revenue per year. Assuming a 30% gross margin and a
5% discount rate, this translates to an PDV of about $82 million, about half as large as
the value reported above. The 75th and 90th percentiles for the PDV are $120 and $162
million, respectively, which are closer. For supercenters, the mean, the 75th, and the 90th
percentiles are $170 million, $200 million, and $220 million, respectively. The scrap value is
only identified for supermarkets (since supercenters rarely closed during our data window).
Note that closed stores are typically much lower revenue than newly opened ones. For
example, the PDV for the average closing supermarket is $57 million, and the 25th percentile
is $47 million.

6 Counterfactuals

From a policy perspective, it is informative to consider how markets would appear today if
the supercenter format had never existed. Many articles have established that Wal-mart,
and by extension, the supercenter format results in a shift in the dimensions of competition.
One salient point in these articles is that smaller firms tend to suffer more than larger
firms. Another is that incumbent supermarkets exhibit little reaction to Walmart’s low price
position. Using the results of our estimation above and conducting counterfactual analysis,
we can extrapolate how markets would have evolved if the supercenter format had not existed
across our 13-year panel.

To compute valid counterfactual comparisons, we solve for a new set of equilibrium
behaviors that reflect a world in which the supercenter format did not exist. In practice,
the means re-solving the full set of structural CCPs for all firms. To do so, we follow a procedure that mimics how the estimation worked with three main differences. First, we consider a smaller set of “representative” markets (and a modified grid of points on which to fully solve the model). Second, we now solve the full doubly nested problem of optimal dynamic behavior coupled with equilibrium best response. Third, we hold the structural parameters fixed at their estimated values.

We start by separating the markets’ population size into 50,000 person increment blocks and simulating 500 grid points for 5 representative market size. For each firm in a simulated market, we perform the same exercise as in our set-up step, namely, generating an initial guess of each firm’s approximate value function. With the initial set-up, we use the CCPs of the data to initialize the forward-looking beliefs. However, in our second iteration, we use the approximate counterfactual CCP’s to re-simulate the beliefs and update our counterfactual CCPs excluding the presence of supercenters.

Then, we grow a regression forest for each block of firms that is fixed across iterations using the same procedure outlined in the set-up stage. Once we have the set of aggregate states, value function approximating forest, and the enumerated one period ahead states, we can then proceed to find the new market equilibria. Using the structural estimates, we can find the actual choice specific probabilities of each firm for a given guess at the value function. With these choice-specific probabilities for a given firm, we proceed to update the other firms’ beliefs in the market. Recursively, we update the probabilities for all firms in the market, and any potential entrants, until the maximum difference between the full set of choice specific probabilities before fully updating and the current updated values is within a tolerance, $1e^{-7}$. Once each of the representative markets has reached an equilibrium, we calculate new approximations of the value function based on these values and complete the exercise again until the maximum difference between the last iteration function approximations and the current iterations are within a $1e – 5$ tolerance. Once convergence is achieved between successive iterations, we collect all the choice specific probabilities from all firms across the
five blocks and proceed with non-linear least squares to calculate the counterfactual CCPs using the same state aggregates as in the data-driven CCPs for parsimony. We complete this whole process twice to ensure that our counterfactual CCPs contain no trace of bias from the actions taken under the premise that supercenters exist.

Armed with both actual and counterfactual CCPs, we then forward simulate 13 periods for each of our representative markets and report aggregate statistics for the final period. In total, we simulate each market 250 times and then compute summary statistics of interest. The summary estimates are presented in the series of tables below. We begin by examining the evolution of the overall market structure. Next, we show the differences in pricing and profitably. Third, we highlight changes in share, quality, and consumer surplus. Last, we comment on the differences in supermarket behavior, given the counterfactual scenarios.

Table 5: Overall Changes in Market Structure

<table>
<thead>
<tr>
<th>Metric</th>
<th>No Walmart</th>
<th>With Walmart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Chains</td>
<td>5.297</td>
<td>4.883</td>
</tr>
<tr>
<td>Total Number of Stores</td>
<td>14.916</td>
<td>15.163</td>
</tr>
<tr>
<td>Total Market Density</td>
<td>0.94</td>
<td>0.945</td>
</tr>
<tr>
<td>Average Number of Stores per Chain</td>
<td>2.862</td>
<td>3.319</td>
</tr>
<tr>
<td>Average Density per Chain</td>
<td>0.189</td>
<td>0.206</td>
</tr>
<tr>
<td>Population</td>
<td>16.714</td>
<td>16.714</td>
</tr>
<tr>
<td>Number of Supercenters</td>
<td>0</td>
<td>0.763</td>
</tr>
<tr>
<td>Number of Supermarkets</td>
<td>5.297</td>
<td>4.12</td>
</tr>
</tbody>
</table>

We are interested in both how supercenters have affected market-level competition and consumer surplus. In congruence with other studies that have focused on a more reduced form approach, we find that supercenters cause the remaining supermarket firms to be larger and, thus, more profitable on average. The overall store-level density is almost the same in both scenarios. The major difference comes from the number of chains in the market. In the absence of a supercenter, there are approximately .4 more chains within a market on average, 5.297 chains on average in the markets where supercenters do not exist versus 4.883 chains in the markets where supercenters exist. That extra chain is, generally, of a smaller size, as the average number of stores per chain in the scenario where supercenters do not
exist is 2.862 versus 3.319 in the other scenario. Last, we see that supercenters have not yet fully populated all the markets, with an average number of supercenter chains being .763. Thus, even the threat of a supercenter entry can stave off other supermarkets from entering a market, which explains why the number of supermarket chains in a market is 4.12 versus 5.297 when supercenters do not exist.

Table 6: Overall Changes in Profitability and Pricing

<table>
<thead>
<tr>
<th>Metric</th>
<th>No Walmart</th>
<th>With Walmart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Market Profits</td>
<td>11.129</td>
<td>12.244</td>
</tr>
<tr>
<td>Avg. Profit by Chain</td>
<td>2.19</td>
<td>2.799</td>
</tr>
<tr>
<td>Avg. Profit by Store</td>
<td>0.72</td>
<td>0.799</td>
</tr>
<tr>
<td>Avg. Market Price</td>
<td>94.29</td>
<td>92.263</td>
</tr>
<tr>
<td>Minimum Price</td>
<td>92.279</td>
<td>84.48</td>
</tr>
<tr>
<td>Maximum Price</td>
<td>95.916</td>
<td>96.542</td>
</tr>
<tr>
<td>Avg. Margin of Chains</td>
<td>0.246</td>
<td>0.258</td>
</tr>
<tr>
<td>Minimum Margin</td>
<td>0.224</td>
<td>0.226</td>
</tr>
<tr>
<td>Maximum Margin</td>
<td>0.288</td>
<td>0.313</td>
</tr>
</tbody>
</table>

Beyond how the market structure has changed with the supercenter format’s presence, we can also identify the effect on pricing, profitability, and margins within markets. In the scenario where supercenters exist, the overall market profitability is higher than when they do not exist by approximately $11 million dollars ($122.4 million versus $111.3 million). A more stark difference occurs at the firm level, where the chain level profits are $ 6 million dollars higher (approximately $28 million dollars per period versus $22 million dollars). One major contributing factor is the increase in store density outlined earlier, since density has the benefit of increasing the attractiveness of a chain’s product. The expansion of a chain has another effect; it reduces their marginal costs. In the scenario where supercenters exist, the average and maximum margins in the market are higher (25.8% and 31.3%, respectively). Some of this increase is due to supercenters having a higher average margin than supermarkets, yet, the tendency of the remaining supermarket chains to be larger influences this number as well. Due to better margins, we see the average weekly basket price in the market is substantially lower when supercenters exist, $92.26 versus $94.29. The lower num-
ber is primarily driven by the supercenters charging a lower price, $84.48, as the average minimum price in a market. More interesting is that some supercenters are now allowed to charge higher prices, where the maximum price in a market is $96.54 versus $95.92. Vertical differentiation brought about by the format change allows the larger, more high-quality supermarkets to actually increase their prices over the competition and make more profits. This finding is in stark contrast to most conventional wisdom, as we would normally expect all prices to drop due to the presence of supercenters in the market.

Table 7: Overall Changes in Consumer Surplus, Quality, and Share

<table>
<thead>
<tr>
<th>Metric</th>
<th>No Walmart</th>
<th>With Walmart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Market Share</td>
<td>0.528</td>
<td>0.537</td>
</tr>
<tr>
<td>Avg. Share by Chain</td>
<td>0.108</td>
<td>0.118</td>
</tr>
<tr>
<td>Share of the Outside Good</td>
<td>0.472</td>
<td>0.463</td>
</tr>
<tr>
<td>Avg. Chain Quality</td>
<td>0.073</td>
<td>0.041</td>
</tr>
<tr>
<td>Minimum Chain Quality</td>
<td>-0.592</td>
<td>-0.601</td>
</tr>
<tr>
<td>Maximum Chain Quality</td>
<td>0.639</td>
<td>0.606</td>
</tr>
<tr>
<td>Consumer Surplus</td>
<td>15.883</td>
<td>16.439</td>
</tr>
<tr>
<td>Consumer Surplus by Chain</td>
<td>3.248</td>
<td>3.647</td>
</tr>
<tr>
<td>Consumer Surplus by Store</td>
<td>1.179</td>
<td>1.22</td>
</tr>
</tbody>
</table>

Over time, we see that the overall share of chains within a market is relatively unchanged. This is a factor of population growth being faster than the rate at which firms open new stores. That said, the inclusion of a supercenter in the scenario increases the total market share coverage of chains by almost 1% more (53.7% versus 52.8%). Given that there are fewer chains in the scenario with supercenters, each chain serves almost 1% more of the market, where the average chain level share is 11.8% versus 10.8%. We also see that the two scenarios’ quality levels are virtually the same, with the no supercenter scenario having an average quality level of .073 versus .041. In terms of consumer surplus, the ultimate metric that codifies how the consumer market views the inclusion of the new technology, we see that the scenario with supercenters wins out with a market-level consumer surplus of 16.439 versus 15.883. The combination of lower average prices and a more favorable format (the supercenter) in a market wins out compared to more chain options and slightly higher
quality.

Table 8: Overall Changes in Supermarket Behavior

<table>
<thead>
<tr>
<th>Metric</th>
<th>No Walmart</th>
<th>With Walmart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Price</td>
<td>94.29</td>
<td>94.236</td>
</tr>
<tr>
<td>Avg. Chain Profit</td>
<td>2.19</td>
<td>2.731</td>
</tr>
<tr>
<td>Avg. Chain Share</td>
<td>0.108</td>
<td>0.113</td>
</tr>
<tr>
<td>Avg. Chain Margin</td>
<td>0.246</td>
<td>0.249</td>
</tr>
<tr>
<td>Avg. Chain Number of Store</td>
<td>2.862</td>
<td>3.52</td>
</tr>
<tr>
<td>Avg. Chain Quality</td>
<td>0.073</td>
<td>0.042</td>
</tr>
</tbody>
</table>

Last, we consider just supermarkets in both scenarios to see how they behave differently in the presence of the supercenter format. On average, the stores that survive a supercenter’s entrance are marginally lower quality but substantially larger. Even being larger, there is virtually no change in the supermarket chain’s average price in either scenario. The margins are a little better for the supermarkets in the scenario where supercenters exist, due to having more stores on average, and thus scale economies. The combination of the pricing remaining relatively unchanged, a slightly better margin and average share results in an overall increase in supermarkets’ average profitability, upon remaining in a market to compete with supercenters. These chains are large enough to compete directly with supercenters. On the other hand, smaller, higher-quality chains quickly exit the market, as these offerings cannot compete in the new environment.

7 Conclusion

This paper proposes and estimates a model of dynamic competition in the supermarket industry. Using recently developed two-step estimation techniques, we recover the structural parameters governing demand, pricing decisions, incremental investment, and entry costs. We then use these parameter estimates to evaluate policies aimed at eliminating Supercenters.

Our analysis finds that in the absence of Wal-mart, the average market grows in terms
of number of firms, but the overall average density is reduced. The presence of Wal-mart creates a blockade that dissuades entry of new firms and actually causes supermarkets to exit the market. However, with the exclusion of the possibility of entry of Wal-mart, we find strong evidence that prices increase, not only the average basket price, but the maximum basket price observed in the market as well. Therefore, Wal-mart can be seen as a boon to consumer surplus on the dimension of price, but not necessarily on the dimension of store choice.

Further, in this paper we outline a new estimation methodology, leveraging advances in machine learning, to estimate models that include dynamics. Utilizing data-adapted kernel weighted forests, we are able to calculate a continuation value in our dynamic setting, despite the richness of the data and large state space. We propose that this technique can offer future researchers in this area an avenue to pursue other questions using dynamics that were not possible with previous techniques.

In this paper, we focus on one sole dimension of competition, changing quality through store density. However, one could imagine that chains have a few different marketing levers that could be pulled to differentiate themselves. One such avenue for future research is allowing firms to simultaneously change by enhancing their position via density of stores and advertising to change their unobserved quality signal. By allowing chains both of these options, we hypothesize that there may be other avenues that firms are using to compete with the dominant technology, beyond the escalation of chain size.
References

programming models by simulation and interpolation: Monte Carlo evidence. *Review of

Learning Research* 7(6).

Pakes, A., M. Ostrovsky, and S. Berry (2007). Simple estimators for the parameters of dis-
crete dynamic games (with entry/exit examples). *The RAND Journal of Economics* 38(2),
373–399.

8 Appendix

8.1 Details of Profit and Share Projection Procedures

Given the approximation of profits and market shares from the prior step, we then use machine learning to create the necessary auxiliary functions. The calculation of chain-level profits would require solving the Nash equilibrium in prices for each chain within a specific market configuration, which is computationally burdensome. To alleviate this burden, we use a regression forest trained on the estimates from the prior step to then construct profits for all market combinations observed in the data that will be used in our final estimation. Using a regression forest gives us an advantage in this stage as it allows for non-parametric relationships between our 16 “approximation states” to enhance the prediction accuracy of both profit and market share.

In the subsection, we enumerate all the features used in our two regression forests, one for chain market share and the other for chain profits. Given that we use a regression forest to link the state aggregates to the calculated profits and share, we cannot directly show a set of coefficients. We present two tables below summarizing the importance ratings and fit statistics for each model in place of a set of coefficients. These tables show evidence that the regression forests can map the state features to the outcome variable sufficiently. The importance ratings measure each feature’s frequency within the first four levels as a splitting variable for a tree. Thus, variables with greater frequencies are deemed to be more important as they help minimize the gap between predicted and observed variables more efficiently.

In both cases, the fit statistic is 98% or greater. Of note, each predictive model has a different ordering of features based on the importance rating. For the market share regression forest, the top three features based on the variable importance measure are: density, own quality, and the difference between how many stores the focal chain has versus the largest competitor chain in the market. Density largely determines the utility of the firm’s product in the static demand model. However, density on its own does not take into the relative
Table 9: Market Share Regression Forest Feature Variable Importance Ratings

<table>
<thead>
<tr>
<th>Feature Variable</th>
<th>Importance Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>0.5868</td>
</tr>
<tr>
<td>Own Store - max Store</td>
<td>0.1753</td>
</tr>
<tr>
<td>Own Quality</td>
<td>0.0955</td>
</tr>
<tr>
<td>Own Store - min Store</td>
<td>0.0382</td>
</tr>
<tr>
<td>Own Q - max Q</td>
<td>0.0363</td>
</tr>
<tr>
<td>Own Stores</td>
<td>0.0291</td>
</tr>
<tr>
<td>SC Dum</td>
<td>0.0118</td>
</tr>
<tr>
<td>Opp Stores</td>
<td>0.009</td>
</tr>
<tr>
<td>Num SM</td>
<td>0.0064</td>
</tr>
<tr>
<td>Own Q - min Q</td>
<td>0.0051</td>
</tr>
<tr>
<td>Opp Quality</td>
<td>0.0022</td>
</tr>
<tr>
<td>Pop</td>
<td>0.0021</td>
</tr>
<tr>
<td>Num SC</td>
<td>0.0011</td>
</tr>
<tr>
<td>Grow</td>
<td>0.001</td>
</tr>
<tr>
<td>r squared</td>
<td>0.9794</td>
</tr>
</tbody>
</table>

Table 10: Profit Function Regression Forest Feature Variable Importance Ratings

<table>
<thead>
<tr>
<th>Feature Variable</th>
<th>Importance Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market Share</td>
<td>0.6114</td>
</tr>
<tr>
<td>Own Stores</td>
<td>0.1912</td>
</tr>
<tr>
<td>Own Store - min Store</td>
<td>0.0796</td>
</tr>
<tr>
<td>Pop</td>
<td>0.0516</td>
</tr>
<tr>
<td>Own Store - max Store</td>
<td>0.0197</td>
</tr>
<tr>
<td>Density</td>
<td>0.0154</td>
</tr>
<tr>
<td>Own Quality</td>
<td>0.0121</td>
</tr>
<tr>
<td>Own Q - max Q</td>
<td>0.0072</td>
</tr>
<tr>
<td>Num SM</td>
<td>0.0034</td>
</tr>
<tr>
<td>Opp Stores</td>
<td>0.0028</td>
</tr>
<tr>
<td>Grow</td>
<td>0.0024</td>
</tr>
<tr>
<td>SC Dum</td>
<td>0.0015</td>
</tr>
<tr>
<td>Own Q - min Q</td>
<td>0.0014</td>
</tr>
<tr>
<td>Opp Quality</td>
<td>0.0002</td>
</tr>
<tr>
<td>Num SC</td>
<td>0.0001</td>
</tr>
<tr>
<td>r squared</td>
<td>0.9936</td>
</tr>
</tbody>
</table>
size of the focal firm compared to the competition; thus the differential in chain size is an important determinant in predicting market share. Last, the recovered quality metric recovered from the static demand analysis further refines market share prediction.

In the profit regression forest, the top three features based on variable importance are: market share, own stores, and the differential between how many stores the firm has compared to the smallest chain in the market. Market share is the largest determinant as it directly affects the chain’s product market profitability. However, the share prediction is further refined by the focal chain’s size, both in terms of the number of stores it owns and how many more than it compared to the smallest chain in the market. Also of note, the market population is the fourth most important variable, which is another variable that directly impacts the chain’s profitability.

From both of these exercises, we see that the total number of stores within the chain, either directly or indirectly through the density measure, impacts the share and firm profitability. This finding gives evidence that our dynamic model is focused on a variable, the number of stores in the chain, that is important to chain managers. Had the chain size not been one of the most important variables, choosing this as the action variable in our analysis would be questionable. However, we see that the chain’s size directly impacts the prediction of chain-level profitability.