Private Labels and Retailer Profitability: Bilateral Bargaining in the Grocery Channel*

Paul B. Ellickson\textsuperscript{a}, Pianpian Kong\textsuperscript{b}, and Mitchell J. Lovett\textsuperscript{a}

\textsuperscript{a}Simon Business School, University of Rochester
\textsuperscript{b}School of Management, University at Buffalo, SUNY

August 21, 2018

Abstract

We examine the role of store branded “private label” products in determining bargaining outcomes between retailers and manufacturers in the single-serve brew-at-home coffee category. Exploiting a novel setting in which the dominant, single-serve technology was protected by a patent that prevented private label entry, we develop a structural model of demand and supply-side bargaining and seek to quantify the impact of private labels on retailer profits. To quantify the benefits of private label introduction, we decompose their impact into the direct profits (from adding an additional product) and the bargaining benefit on branded products (from increasing retailer’s bargaining leverage), netting out the business stealing effects on incumbent branded products. We find that bargaining outcomes are driven primarily by bargaining leverage, while bargaining ability is relatively symmetric between retailer and manufacturer. Moreover, the impact of bargaining leverage is substantial: increased bargaining leverage accounts for roughly 20\% of the overall benefit of private label introduction, which is itself on the order of 10\% of pre-introduction profits. Finally, we find that private labels are beneficial to all retailers, but some retailers gain much more than others.

Keywords: Retail Grocery, Bargaining Models, Private Labels, Store Brands, Demand Estimation.

\*We thank Guy Arie, Greg Crawford, Michaela Draganska, Ron Goettler, Paul Grieco and Ali Yu-rukoglu for valuable comments. We also thank seminar participants at Arizona State Carey, Duke Fuqua, Goethe Universitat, Houston, Northwestern Kellogg, Penn State economics, University of Rochester, Simon Business School, Yale SOM and the University of Zurich as well as attendees at INFORMS Marketing Science 2017, SICS 2017, and QME 2017 for helpful feedback. Send any correspondence to paul.ellickson@simon.rochester.edu (Ellickson), mitch.lovett@simon.rochester.edu (Lovett) or pianpian@buffalo.edu (Kong).
1 Introduction

Private labels are an important source of retailer revenues and profits. They generated $98 billion in U.S. food and grocery sales in 2012, or 17.1% of total revenues (Schultz, 2012; Nielsen Global Survey, 2012). The impact of private label brands on retailer category profits can come directly from the private label sales themselves or indirectly through improved negotiating positions with national brands. Direct profits increase because private labels can attract new consumers or larger spending through lower prices; higher margins are another benefit. Indirect profits arise because the store brand can play a strategic role in negotiations with manufacturers and increase the retailers’ share of channel profits (Scott Morton and Zettelmeyer, 2004). A private label improves the retailer’s bargaining position by reducing the forgone profits if negotiations with manufacturers fail, generating a bargaining benefit via more favorable margins on the competing branded products.¹

In this paper, we measure the influence of private label entry on bargaining outcomes in the single-cup brew-at-home coffee category and compare the size of the bargaining benefit to that of the direct profit from simply adding more options. Our empirical analysis exploits a unique setting in which the dominant branded product, Keurig/GMCR’s ‘Single-cup’ technology, was patent protected, effectively preventing entry by private label coffee products prior to patent expiration. Therefore, we are able to observe how retailers and manufacturers behave both with and without competition from private label products, and isolate the factors that change this conduct. Further, because our data contains many retailers, we observe variation in the quality and positioning of the various private label brands. After the patent expiration, this yields exogenous variation in the shock to negotiations that different retailers receive. To leverage this unique source of variation, we build a model of consumer demand and supply-side bargaining in the brew-at-home coffee category. We estimate the model using weekly, chain-level data from 72 retail market areas. We then conduct counter-

¹A third benefit argued for store brands is store or store brand loyalty that increases traffic to the store. Our data limits our ability to speak to this potential benefit and so, beyond effects through changes in the draw from the outside good, we do not claim to capture such benefits in this study.
factual exercises that quantify the impact of private label products on bargaining outcomes, comparing the bargaining benefit to the direct category expansion benefit of introducing private labels.

As noted above, our empirical strategy involves exploiting a unique setting that unfolded in the brew-at-home coffee market over our sample period. A previously mature product category, the brew-at-home coffee market was disrupted in the mid-to-late 2000s by a new product offering: single-serving coffee pods. This new technology offered convenience, and a standardized, high-quality brewing experience, to a growing segment of coffee connoisseurs. While single-serve coffee had existed both in the U.S. and abroad for many years, Keurig/GMCR was able to position itself as the de facto U.S. standard by offering a wide range of sub-brands and licensed/partner products, alongside a design that was superior to its rivals and much wider product distribution.² Notably, since both the Keurig brewers and the Single-cup³ pods were patented, competitive entry (to this particular design) was effectively foreclosed until late 2012, creating a unique “before and after experiment.” To exploit this exclusion, we develop a structural model of demand and supply that can control for confounding factors in the competitive environment (e.g., cost changes, new product entries, continued market expansion, and evolving substitution patterns) and reveal how private labels shaped bargaining outcomes.

While providing a unique setting for analyzing private label competition, the single-serve coffee category presents some challenges on the demand side. First, a central aspect of the Keurig/GMCR strategy was brand variety, so it will be important to include the full set of brands offered. Second, since this was a new product launch (that we observe almost from inception), availability of Single-cup products was limited, especially in the early periods. Finally, brewing single-cup pods requires owning relatively expensive and specialized hardware (i.e., the Keurig brewer). Consumers that did not own the brewer were

²Keurig/GMCR is also the “category captain” in many retailers, adding to its dominant position (Nijs et al., 2013). The category captain coordinates with the retailer to manage the selection and display of a given product category. It is typically one of the leading national brands.
³We refer as Single-cup to the single-serve products for the Keurig system hereafter.
not in the market for single-cup pods. Ignoring these market features could lead to large biases in our demand estimates. Getting the demand system right is critical, as it drives all subsequent inference. We address all three concerns by extending Bruno and Vilcassim (2008) and developing a random-coefficient, discrete-choice demand system that accounts for availability and machine ownership by simulating individual consumers and aggregating up to observed shares (availability and ownership are tied to the data via aggregate moments of each). We demonstrate that the model yields flexible substitution patterns that capture key market features, including substitution between single-cup products and variation in the private label brand equities.

Turning to the supply side, we must first recover wholesale prices, as these are not observed in the data. To do so, we assume monopolist retailers and use the first order conditions from the retailer’s profit maximization problem to solve for the wholesale prices that rationalize retailer decisions (Bresnahan, 1987; Werden and Froeb, 1994). We find that these recovered wholesale prices decline in the period after the patent expiration as one would expect if the bargaining benefit were meaningful.

These inferred wholesale prices are then the focus of our bargaining model. We assume that retailers and manufacturers bargain over linear contracts that determine these “transfer prices.” Following the recent literature, we model the retailer-manufacturer vertical contracting relationship as a ‘Nash in Nash’ bargain, focused on determining the wholesale price that effectively splits the gains from trade. Using the inferred wholesale prices, we recover the bargaining power (ability) parameters and manufacturer cost parameters that rationalize the data. To do so, we compute both the profits that each party achieves under agreement and the profits that would obtain should they fail to reach agreement. The observed wholesale prices maximize the Nash product, as indexed by the power parameters. Private label products provide a key source of variation in the disagreement payoffs that define the gains from trade.

To estimate this bargaining model, we modify the empirical approach developed by
Grennan (2013), which allows us to recover separate bargaining parameters for each retailer/manufacturer pair. We find that bargaining ability is quite symmetric between retailers and manufacturers and also does not change significantly after the patent expiration (private label entry). Thus, we find that bargaining outcomes are driven primarily by the shift in bargaining leverage (position) that private labels create. We then conduct counterfactual exercises that quantify their impact bargaining outcomes. The impact of the change in bargaining leverage is substantial: bargaining benefits account for roughly 20% of the overall benefit of private label introduction, which is itself on the order of 10% of pre-introduction profits. We find that private labels are beneficial to all retailers, but some retailers gain much more than others. The size of the gain increases with the quality of the adjacent private label, suggesting that success in one category can be leveraged in others.

Our research relates to several streams of literature in both marketing and economics. First, we contribute to the literature on private labels, which includes seminal papers by Hoch and Banerji (1993) and Dhar and Hoch (1997) that identified and cataloged the determinants of private label success, and sought to explain why their penetration varied across retailers. Hansen et al. (2006) investigate whether consumer tastes for store brands are correlated across categories, or are driven more by category-specific factors. They find strong evidence of the former relative to the latter. Sayman et al. (2002) study how private labels are positioned vis-a-vis national brands, and Scott Morton and Zettelmeyer (2004) show how private labels allow the retailer to carry closer substitutes to national brands than otherwise and that this arises because of the incentives national brands face in negotiating with retailers.

A few papers have studied questions more directly related to the bargaining benefit of private labels per se. Pauwels and Srinivasan (2004) examine the impact of store brand entry on the relative margins of retailers and suppliers, as well as their role in shifting consumer demand. They examine four categories in the Dominick’s Finer Foods retail chain and find that retailer margins improve, but that category sales only rarely expand upon store brand entry. Similarly using Dominick’s data on the oats category, Chintagunta et al.
(2002) empirically analyze how private labels change conduct in the channel, as well as how this conduct translates through to retailer pricing decisions. They find that post entry manufacturers’ accommodate so that Dominick’s average weekly margin increased by around 3%, but that consumers tastes do not change post entry. Meza and Sudhir (2010) again use Dominick’s data, but for the breakfast cereal market, and examine how private labels affect bargaining power, and ask whether and how retailers can use prices to strategically influence this negotiation. They find that bargaining power increases as evidenced by lower wholesale prices on imitated national brands, but that strategic pricing is less clearly evidenced in the data. We add to this literature along three key dimensions. First, our setting lets exploit the patent expiration to evaluate behavior with and without exogenous private label exclusion. Second, we implement a full bargaining model specification that allows us to generate counterfactuals to investigate the causal effects of private labels and isolate the bargaining component of the private label benefit. Third, we expand the investigation from a single retailer to 54 different retailer banners and 72 different retail market areas, allowing us to describe the distribution of private label bargaining and category expansion benefits across varying private label brand qualities.

Our bargaining model draws upon the theoretical literature on bilateral Nash bargaining (Nash, 1950; Rubinstein, 1982), which includes the theoretical development of the ‘Nash in Nash’ bargaining solution for most applied work by Horn and Wolinsky (1988) and recent developments by Collard-Wexler et al. (2014). In doing so, we contribute to the growing stream of empirical literature on bargaining models, which includes papers by Misra and Mohanty (2006), Ho (2009), Draganska et al. (2010), Crawford and Yurukoglu (2012), Grennan (2013), Ho and Lee (2013), Gowrisankaran et al. (2014), and Crawford et al. (2015). This work is also related to a broader empirical literature on vertical contracting, which includes important contributions by Villas-Boas (2007) and Bonnet and Dubois (2010), among several others. Two papers in this literature on manufacturer-retailer relationships speak directly to the coffee market. Noton and Elberg (2016) model bargaining between retailers and
manufacturers in the Chilean market for instant and ground coffee, focusing on the impact of supplier size on the split of channel profits. Contrary to conventional wisdom, they find that small suppliers often attain shares of the channel surplus on par with the largest supplier. In the paper most closely related to ours, Draganska et al. (2010) empirically model the bargaining problem between retailers and manufactures in the German market for ground coffee, seeking to quantify the sources of heterogeneous bargaining power and determine whether they have shifted over time. They find that store brand entry, per se, does not increase bargaining power, but that store brands positioned closer to national brands tend to have stronger bargaining power. They also find that bargaining positioning has little impact on profits.

Our contribution to the broader bargaining literature goes well beyond a new application of the model. Our unique setting of the patent expiration allows a test of sorts of the bargaining model itself. Specifically, we are able to evaluate how well the model captures the way private labels shift bargaining position as compared to needing to capture the change in bargaining outcomes through bargaining power (ability), a shift that seems unlikely to actually occur at the point of the patent expiration. We find that indeed the bargaining model can capture the change through bargaining position with changes in the average bargaining power before versus after the patent expiration being very small and insignificant. This provides new evidence that bargaining models can capture fundamental aspects of supply behavior under even large exogenous shifts in the supply arrangements.

The paper is organized as follows. In section 2, we describe the data used in our empirical study and provide an overview of the at home coffee market and the role of the single serve segment in driving its expansion. The model and estimation are described in section 3. We present the results of our estimation in section 4 and conduct counterfactual exercises in section 5. Section 6 concludes.
2 Data and Setting

The data are drawn from IRI’s point of sale (POS) database for the period January 2008 to March 2014. The data cover 72 U.S. retailer-market areas (RMAs) and include 54 distinct retail banners. Retailer-market areas are geographic trading areas defined by IRI together with the retailer, and roughly correspond to retailer divisions. Retailer divisions are usually organized around regional distribution centers, which typically serve up to a few hundred individual stores. The data we have access to contain information only about the retailer and not other competing retailers in the market area.

For each RMA, we observe weekly, SKU-level data on sales, price per serving and merchandising variables, each aggregated up from the individual store level to the RMA. In addition, we observe the standard volume (ACV) weighted product distribution measure, our key proxy for product availability at the RMA-level. Rather than working with individual SKUs, we aggregate up to the segment-brand level, so that, for example, all Starbucks’ Single-cup SKUs (e.g. Dark Sumatra, Breakfast Blend) are rolled up to a single choice. Note that this is done by segment, so that, for example, Starbucks premium drip coffee (whole bean and ground) is treated as a separate product from the Starbucks Single-cup offering. We include four coffee segments: instant (e.g. Nescafe), main (e.g. Folgers), premium (e.g. Starbucks) and single-cup (e.g. Keurig). The four segments are vertically differentiated, with instant and main offering the cheapest alternatives and single-cup the costliest. In the single-cup category in particular, Keurig operates a number of sub-brands with common pricing and promotion schedules. In the analysis we have aggregated these to a single “Keurig” brand for Single-cups. Details of the brand aggregation and the segment definitions are in appendix A.

In addition to the aggregate POS data, we include cross-tabulations drawn from the IRI individual panelist data. We use the panelist cross-tabs in two ways. First, the panel provides an estimate of the number of shoppers in each RMA. We use this to construct our measure of market size. We define the size of the market to be the number of shoppers times
the number of days per week (7) times a scaling factor related to per capita coffee purchase in that RMA, which we obtain from the average daily coffee purchases in that market per shopper. Second, we develop a proxy for the installed base of Single-cup machine owners. We extract Single-cup penetration data that reports, at the yearly level, the percent of shoppers (in each RMA) who have consumed Single-cup coffee products in the previous 12 months. We then use these yearly values from the panelist data to impute weekly observations of installed base at the RMA-weekly level. The details of this imputation are available in appendix B.

Finally, we obtain information on coffee bean commodity prices from the International Coffee Organization (http://www.ico.org). These bean prices are available at the monthly level for the four primary coffee bean types: Colombian milds, other milds, Brazilian naturals, and Robustas. The prices are in US cents per pound, which we convert to US dollars per pound for our analysis. The prices for all the bean types, except for the Robustas, are closely correlated. The Robustas are priced slightly lower than the other bean types. During the observation period, the bean prices increase and then fall, with the peak prices occurring in early 2011. We use these bean prices as an input to the manufacturing costs. In addition, we categorize the brands into Keurig relationships and vertical positions. In particular, we create five categories: owned, licensee, partner, value offering, and premium offering.

Our final sample is selected to include RMA-week-segment-brand cases with a reasonable level of distribution. Details of the sample construction are presented in appendix A.

2.1 The Brew-At-Home Coffee Market

The previously mature category of coffee for ‘at home’ brewing was disrupted in the mid to late 2000s by the creation and expansion of the ‘Single-cup’ brewing technology pioneered by Keurig and Green Mountain Coffee Roasters (GMCR). While a variety of single serve coffee technologies have existed in the U.S. for quite some time (primarily in the commercial office setting), they did not achieve widespread adoption in the at-home market until Keurig
effectively created the de facto standard with its proprietary Single-cup technology. Keurig started by focusing on the commercial office market, utilizing a direct sales force distribution system that relied on partnerships with five primary coffee roasters, who also handled the production and distribution of the cups. They shifted focus to the much larger at-home market in the early 2000s, at which point GMCR acquired Keurig (they had earlier been separate companies) and brought the main coffee roasters in house as well. The popularity of the Keurig system leveraged the growing demand for premium coffee resulting from the rapid expansion of Starbucks cafes and other premium coffee shops in the U.S. throughout the 1990s, which also drove the growth of the premium ground and whole bean segment in the grocery channel in the late 1990s and early 2000s. The Keurig system offered the convenience of a ‘mess-free’ single-serve brewing experience, while standardizing the quality of the delivered coffee (by precisely controlling the portion size, brewing time and temperature). A key factor in their positioning strategy was the wide array of flavors, styles and brands they offered, which GMCR achieved through an aggressive licensing and partnership strategy with household brands. This positioning differentiated GMCR’s Single-cups from competing single-serve products like Senseo, Flavia and Tassimo. Moreover, by becoming the de facto standard for single-serve at-home brewing, they were effectively the only single-cup option available (in wide distribution) at grocery stores, mass merchandisers and clubs, which created a network effect.

Figure 1a shows the evolution of the four main coffee segments over time. The horizontal axis is delineated in weeks since the first week of 2008 and ending at the end of the first quarter of 2014. The vertical axis is national dollar sales of coffee. While there is clear seasonality in sales over the course of any given year, the stability of the three traditional segments (premium, instant and main) is clear. Main and premium command relatively equal dollar shares of the overall market, while instant lags far behind. The most dramatic

---

4In Europe, the capsule-based single-cup espresso brewing system developed by Nespresso has become the standard there. Nespresso machines are available in the U.S. as well, but have had more limited success in this market than Keurig due to their focus on espresso-based beverages and their far more limited capsule distribution, which is still primarily through online sites.
Figure 1: Coffee Sales

feature of the graph is the meteoric rise of the single-cup segment, which starts essentially from scratch in 2008, yet becomes the largest overall segment by the end of the sample period.

Figure 1b focuses on the single-cup segment alone, revealing Keurig’s dominant sales position relative to its other partners and licensees (before patent expiration) as well as the sharp growth of the private label brands that entered when the patents expired in September of 2012 (week 246 in the figure).

Figure 2 illustrates how product availability (in all four segments) and installed base (for the single cup segment) evolved over the sample period. Figure 2a shows the sales weighted percent ACV distribution over time for all four categories. From the figure, it is clear that the dominant brands in main and instant are essentially carried everywhere, whereas premium, with its more regionally-focused local brands (Bronnenberg et al., 2012), is more heterogeneous (the lower level of average availability in the premium segment mainly reflects variation across chains in what brands they carry, not variation within chains in the products that are carried in particular stores). Note that, even in premium, availability is clearly quite stable over time. In single cup, however, availability increases sharply for roughly the first two years of the sample (until the beginning of 2010), but stabilizes by the end. This is due to the progressive nature of the Single-cup roll-out and the large number of new product entries (mainly through partnerships and licensing arrangement with Keurig) that occurred over this
Figure 2: Availability and Installed Base

period. Our demand model (presented in section 3.1) has been constructed to account for these features. Figure 2b shows the evolution of our imputed measure of installed base (a proxy for the percent of the population that have access to Single-cup-compatible brewers) aggregated to the regional level. As the figure makes clear, the installed base continued to grow over the sample period, and exhibited substantial geographic variation. These patterns will also be accounted for in our demand analysis. We note that the installed base measure does not have a marked break at the time of the patent expiration, nor do the prices of Keurig machines that might drive such a break (see Web Appendix C).

Since private label entry in the single-serve coffee category is an important aspect of this study, we present the timing of entry by private label brands in Figure 3a, which contains a histogram characterizing the timing of private label entries over the sample period. The vast majority of entries occurred within plus or minus four weeks of patent expiration in mid-September 2012, with the ones entering just before the patent expiration being manufactured by Keurig (i.e., Keurig was the private label manufacturer for the retailer). Note also that there is another group of retailers that chose to launch private label about a year later instead and yet another group that entered long before patent expiration, apparently in violation of the patent. In the data, these early entrants withdrew the products shortly after entry, and our understanding is that at least one of these firms was threatened with a lawsuit. In total,

---

5 The actual scale of the installed base is hidden for confidentiality.
all but seven RMAs launched a private label during our data period. Note that because our study answers the primary research question by evaluating the counterfactual if the private label were not launched, this implies limited scope for selection concerns on the decision of whether to launch a private label.

2.2 Weekly Data for Demand Estimation

In total our data contain 72 retail market areas and 54 unique grocery banners. The data span 326 weeks, but some RMAs are missing in the first year. As a result, we have 22,116 weekly RMA observations. The number of segment-brands varies across weeks from 16 to 57 and generally increases over time, as single-cup brands are added to the product mix. In total, we have 615,424 observations at the RMA-week-segment-brand level.

Table 1 presents summary statistics for prices and sales in the single-cup segment. The information is split into the year before and after the patent expiration. The first row contains all brands, so that the number of brands differs between the pre and post patent period. Both a large growth in sales as well as an overall decline in prices is clear. The second row drops the private label, which suggests that the average price decline is not only due to the private label itself. The third row considers a set of brands that were in the market at least half the year before the patent expired. In this way, the set of brands is constant. Again, prices fall and sales increase, though both changes are further muted. The next set of rows examine individual brands; specifically, the ones included in the the “Same Brands Pre/Post” row. Most of these brands decline in price and increase in sales, except for Caribou Coffee and Newman’s Own Organic, both of which increase price and decline in sales.

Table 2 presents information about the distribution of the number of single-cup brands across RMAs during the year before and year after patent expiration. The first row corresponds to all single-cup brands and indicates that the average number of brands that sold single-cups the year before the patent expired was 6.9, whereas after it was 12.8, so that more
than 6 brands were added on average. The next three rows consider the number of brands in three price tiers: low is less than 60 cents per cup, mid is between 60 and 75 cents per cup, and the high tier is greater than 75 cents per cup. Brand entry was somewhat concentrated in the lower price tiers with on average 2.9 brands added to the lowest tier, 1.5 to the middle tier, and 1.4 to the top tier. In the early period the lowest priced brands tended to be San Francisco Bay or Eight O Clock, whereas the highest priced tier was largely Starbucks and a mix of either Caribou Coffee or Newman’s Own Organic depending on the period and RMA. The lower tier added the private label as well as some brands that shifted down stream over time such as Folger’s Gourmet, Eight O Clock, and Maxwell House after it launched. The highest tier consistently added Peet’s after it entered and more consistently included Caribou Coffee and Newman’s Own Organic than in the pre-patent expiration period. Beyond these changes in products and their positioning, we also note that the amount of merchandising (display) did not meaningfully change between the pre and post periods, with the median slightly decreasing and the mean slightly (approximately 1 percentage point) increasing and that the level of display is very modest with an average around 7-8%.

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>Post</th>
<th>% Change In Price</th>
<th>Weekly Sales</th>
<th>Avg. Price</th>
<th>Weekly Sales</th>
<th>Avg. Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Brands</td>
<td>18,641</td>
<td>32,270</td>
<td>-6%</td>
<td>0.69</td>
<td>0.65</td>
<td>73%</td>
<td>-4%</td>
</tr>
<tr>
<td>All Brands Except PL</td>
<td>18,611</td>
<td>29,383</td>
<td>-4%</td>
<td>0.69</td>
<td>0.66</td>
<td>58%</td>
<td>-2%</td>
</tr>
<tr>
<td>Same Brands Pre/Post</td>
<td>18,400</td>
<td>25,559</td>
<td>-2%</td>
<td>0.69</td>
<td>0.67</td>
<td>39%</td>
<td>-2%</td>
</tr>
<tr>
<td>Caribou Coffee</td>
<td>1,097</td>
<td>793</td>
<td>-28%</td>
<td>0.69</td>
<td>0.74</td>
<td>-28%</td>
<td>66%</td>
</tr>
<tr>
<td>Folgers Gourmet</td>
<td>3,442</td>
<td>4,584</td>
<td>33%</td>
<td>0.66</td>
<td>0.64</td>
<td>33%</td>
<td>-4%</td>
</tr>
<tr>
<td>Kengir</td>
<td>9,419</td>
<td>11,284</td>
<td>41%</td>
<td>0.66</td>
<td>0.63</td>
<td>41%</td>
<td>-4%</td>
</tr>
<tr>
<td>Millstone</td>
<td>927</td>
<td>1,240</td>
<td>34%</td>
<td>0.67</td>
<td>0.66</td>
<td>34%</td>
<td>-4%</td>
</tr>
<tr>
<td>Newman’s Own Organic</td>
<td>1,313</td>
<td>993</td>
<td>-24%</td>
<td>0.69</td>
<td>0.73</td>
<td>-24%</td>
<td>6%</td>
</tr>
<tr>
<td>San Francisco Bay</td>
<td>283</td>
<td>430</td>
<td>52%</td>
<td>0.56</td>
<td>0.53</td>
<td>52%</td>
<td>-6%</td>
</tr>
<tr>
<td>Starbucks</td>
<td>2,255</td>
<td>4,235</td>
<td>88%</td>
<td>0.89</td>
<td>0.84</td>
<td>88%</td>
<td>-6%</td>
</tr>
</tbody>
</table>

Table 1: Avg. Single-Cup Weekly Unit Sales and Sales Weighted Prices for Pre and Post Patent Expiration.

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>Post</th>
<th>% Change In Price</th>
<th>Weekly Sales</th>
<th>Avg. Price</th>
<th>Weekly Sales</th>
<th>Avg. Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Price Tiers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price &lt;0.60</td>
<td>6</td>
<td>11</td>
<td>12.8</td>
<td>6.9</td>
<td>12.8</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Price in (0.60,0.75)</td>
<td>4</td>
<td>5</td>
<td>6.0</td>
<td>4.5</td>
<td>6.0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Price &gt;0.75</td>
<td>1</td>
<td>2</td>
<td>2.9</td>
<td>1.5</td>
<td>2.9</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Distribution of Number of Single Cup Brands Across RMAs for Pre and Post Patent Expiration.
2.3 Quarterly Data for the Bargaining Model

In this section, we first briefly describe the estimation sample for the supply side estimation before providing some description of that data. We aggregate to the quarterly level to better match the decision frequency of the negotiations over wholesale prices. We focus on the years 2010 onward after the most dramatic increase in distribution of single-cup products occurred and substitution patterns are more likely to be stable. We include only single cup products in our bargaining analysis to reduce the computational complexity, and note that although some substitution exists between the single cup segment and the other segments, this substitution is relatively small. Finally, we drop some cases due to problems in the quarterly aggregation (e.g., too few observations in a quarter). The details of the sample construction are provided in appendix A.

The final sample retains 6,978 observations (retailer-market-brand-quarter cases), which is 92% of the potential single cup bargaining observations after 2010. We note that these observations largely come from markets that have between 3 and 10 brands (74%) and more than 50% are from markets that have between 3 and 6 brands. Because over time more brands generally entered most markets, the market-periods with less than 3 brands occur largely in 2010 (74%) and all of the cases with more than 10 brands occurs after the patent expiration (i.e., 2013 and 2014).

Since our main interest lies in identifying the wholesale price that results from negotiations between retailers and manufacturers, we focus on regular price as our primary outcome variable.\footnote{See Nijs et al. (2010) on the role of manufacturer trade promotions.} The POS data do not distinguish between regular and promotional prices, so we proxy for the regular “shelf” price by computing the 90th moving quantile of quarterly prices and treating this as the regular price. The remaining measures are constructed as averages.

Figure 3b shows the regular price series for the leading brand in each of the three primary segments (single-cup, premium and main). There is a single price series for each retailer (RMA) in each category. Although we focus on bargaining in the single-cup segment, we
show the regular prices for the other segments as a benchmark, for instance, to capture the influence of common cost factors on retail coffee prices. From this figure we can ascertain three facts. First, the figure depicts the clear vertical separation of the segments. Second, retailers’ prices vary a reasonable amount. Third, by comparing across segments, we are able to see that prices in the single cup segment decreased after patent expiration (quarter 19 in the figure, corresponding to the vertical line) more than the other segments. Moreover, single cup prices continue to fall for the remainder of the sample, as additional private label and independent (e.g. non-Kuerig-affiliated) brands continue to enter the market.\footnote{Using a difference-in-difference analysis between the single-cup segment and the other segments for the pre-versus post-patent expiration periods and including controls for time trends, quarter of year dummies and RMA fixed effects, we find that the interaction representing the diff-in-diff for the immediate decrease from quarter 19 to 20 is significant (coef=-0.034, se=0.006, n=432), and so is the total decrease in the post patent expiration (coef=-0.024, se=0.003, n=2592).}

3 Model and Estimation

On the demand side, we specify a relatively standard discrete choice, random coefficient model of consumer demand (aggregated to the market share level) using the framework...
developed by Berry et al. (1995). To accommodate the rapid expansion of the single-cup segment (particularly the limited early distribution/availability in many grocery chains) and also to account for the costly hardware requirement of owning a Keurig brewer, we employ methods developed by Bruno and Vilcassim (2008) to simulate consumers with choice sets that are consistent with these market features.

On the supply side, we assume that retailers set monopoly prices at the retail level (abstracting away from retailer to retailer competition). Using the first order conditions (FOCs) of the monopoly pricing problem, we then ‘back out’ the implied marginal costs the retailer pays for each coffee product (Werden and Froeb (1994); Nevo (2000a)). These costs are assumed to be the wholesale prices charged by manufacturers to the retailers that carry their products. Note that we do not have any additional data on the wholesale prices themselves. For all products carried by a given retailer, we assume that these wholesale prices are negotiated via the ‘Nash in Nash’ bilateral bargaining (with passive beliefs) protocol proposed by Horn and Wolinsky (1988). In particular, we assume that the parties bargain bilaterally over a purely linear transfer price, enforcing the assumption that firms do not believe that other contracts will be renegotiated should they fail to reach agreement in this bargain. Note that we are directly ruling out the existence of more complex nonlinear contracts, slotting fees, quantity discounts or full-line forcing arrangements that may be empirically relevant (O’Brien and Shaffer, 2005).

3.1 Demand Model and Estimation

We assume that consumers are in the market for coffee every week, though we set the market size to account for the population of coffee drinkers and the number of cups they drink per

---

8Given our full estimation set-up, this is not as restrictive as it might seem. We include six-month product intercepts for all products, so that the outside good is effectively able to change every half year. Hence, the only cross-store effects we do not capture with our demand system are short term price promotions and merchandizing. Of course, the monopolist assumption ignores strategic interaction among retailers.

9Although these are admittedly strong assumptions (albeit ones that are maintained throughout almost the entire empirical bargaining literature), we have some ability to test their restrictiveness by focusing on the small set of firms that publicly and categorically refuse to enter into such arrangements.
week. Consumer $i$ is characterized by a vector of taste parameters which includes price sensitivity and segment specific tastes, as well as a vector of local product availabilities, $a_{it}$, and an ownership indicator for the hardware required for the Keurig system, $m_{it}$. The hardware and availability variables determine which products are in the current choice set of a given consumer, as will be precisely detailed below. For consumer $i$ in market $r$ at time $t$, the utility for product $j$ (segment-brand) is then given by

$$u_{ijrt} = \alpha_i \log(p_{jrt}) + \gamma_{it}X_{jrt} + \xi_{jrt} + \epsilon_{ijrt}$$  \hspace{5mm} (1)$$

The individual level utilities are defined as follows:

$$\begin{pmatrix} 
\alpha_i \\
\gamma_{it} 
\end{pmatrix} = \begin{pmatrix} 
\bar{\alpha} \\
\bar{\gamma}_t 
\end{pmatrix} + v_i$$  \hspace{5mm} (2)$$

where $v$ is assumed to be distributed multivariate normal with mean zero and diagonal covariance matrix, and, as typical in structural demand estimation, we assume the $\epsilon_{ijrt}$ are distributed according to a type-I extreme value error distribution. Following Nevo (2001), utility can be re-written parsimoniously as $u_{ijrt} = \delta_{jrt} + \mu_{ijrt} + \epsilon_{ijrt}$. The first term, $\delta_{jrt} \equiv \bar{\alpha}\log(p_{jrt}) + \bar{\gamma}_tX_{jrt} + \xi_{jrt}$, represents the common component of utility that is shared by all individuals, while the two remaining terms, $\mu_{ijrt}$ and $\epsilon_{ijrt}$ are heterogeneous across them. The $\mu_{ijrt}$ is simply $v_i \left( \log(p_{jrt}), \tilde{X}_{jrt} \right)'$, in which $v_i$ are often referred to as the ‘nonlinear parameters’ and $\tilde{X}_{jrt}$ is the subset of variables in $X_{jrt}$ that have random coefficients. We note that in our setting $X_{jrt}$ contains product-six-month fixed effects and month-in-year time effects for each RMA, along with a coefficient for percent ACV display.\footnote{Recall that distribution and hardware ownership are handled directly in the simulation and do not appear as variables in $X_{jrt}$} For the non-linear parameters, we include a random coefficient on $\log(p_{jrt})$, and coefficients on the $\tilde{X}_{jrt}$, which contains segment dummies.

The availability and Keurig machine ownership variables constrain choices by excluding
or including options from the consumer’s choice set. The availability vector contains a
token by variable for each time period for each product. These variables take the values 1 or
0, indicating whether the product is available for that consumer in that week. The machine
ownership variable, $m_i$, has elements for each week, for each individual, taking values 1 if the
individual owns the machine and 0 otherwise. When $m_{it} = 0$, the availability for all single-
cup products are then set to 0; we denote this modified availability vector $\tilde{a}_{it}$. Note that
none of these variables are observed to us, but will instead be simulated from the aggregate
distribution, from which we are able to extract moments.

We normalize the outside good utility to 0, so that the individual probability of purchase
can then be computed as

$$ s_{ijrt} = \frac{\tilde{a}_{ijrt} e^{\delta_{jrt} + \mu_{jrt}}}{1 + \sum_k \tilde{a}_{ikrt} e^{\delta_{krt} + \mu_{ikrt}}} . $$

(3)

Estimation proceeds via the generalized method of moments (GMM) as described by
Nevo (2000b) with the main distinction being the additional simulation over the availability
and ownership terms (based on Bruno and Vilcassim (2008) and Tenn and Yun (2008)). To
help identify the nonlinear parameters (associated with price and tastes for each segment),
we use the instrumenting strategy proposed by Gandhi and Houde (2015), which generalizes
and extends the methods originally suggested by Bresnahan et al. (1997). Note that we
are not instrumenting for price; we treat prices as conditionally exogenous given the large
number of time-varying product dummies already included in the demand system.11 The
instruments that we do include are needed here to identify the nonlinear parameters that
characterize the consumer heterogeneity. The design of these instruments is intended to
capture how isolated a product is in product space, which should, in principle, give it more
market power. The particular instruments we employ are 1) the number of brands in a set
of price-difference bins, 2) the number of brands in the various price-difference bins within
the product’s own segment, and 3) the sum of the price differences in the product’s own

---

11In fact, we have commodity coffee cost data, but once including the large number of time-varying
dummies, the cost instruments have relatively little explanatory power. Note that later we use these cost
variables as cost index variables in the cost function.
segment. In addition, we include the full cross of the average segment prices by the segment identities.

3.2 Supply Model

The supply model has two stages. In the first stage, the retailer and manufacturer bargain over the wholesale prices. In the second stage the retailer sets retail prices given these wholesale prices. This timing corresponds to the idea that negotiations over wholesale prices occur relatively infrequently compared to retailers’ opportunities to adjust retail prices. In our discussion of the supply-side model, we begin with the retailer profits and retail pricing decisions and then turn to the bargaining model.

3.2.1 Retailer Profits and Retail Pricing Decisions

The retailer profits and pricing problem is a relatively standard multi-product problem (e.g. Goldfarb et al. (2009)). For the set of products carried by the retailer $r$ in period $t$, $m_{rt}$, the retailer profits are given by

$$\Pi_{m_{rt}}(\cdot) = \sum_{j \in m_{rt}} (p_{rjt} - w_{rjt}) s_{rjt}^{m_{rt}} (p_{rjt}) M_{rt},$$

where $M_{rt}$ is the size of the market and $s_{rjt}^{m_{rt}}$ are the shares for product $j$ in retailer $r$ at time $t$ when consumers face as the feasible choice options all products in the set of products $m_{rt}$. Note that this set of products may be smaller for specific consumers because of lacking hardware ownership or distribution.

The optimal retail price decisions take wholesale prices as given and follow standard monopolist retailer price setting (see, e.g., Nevo (2000a)). The optimal pricing policy in matrix format are, $p = w + \Omega(p)^{-1}s(p)$, where $\Omega(p)$ is the relevant matrix of share derivatives. Note also that we can solve directly for wholesale prices as $w = p - \Omega(p)^{-1}s(p)$, which is how in our empirical analysis we recover wholesale prices from retail prices. The bargaining
model that we discuss next takes the retail pricing policy as given.

3.2.2 ‘Nash in Nash’ Bargaining

The negotiation between manufacturer and retailer over wholesale prices is formulated as a ‘Nash in Nash’ bargaining problem. In this problem, each manufacturer and retailer pair bargain over each of the brands’ wholesale prices. These bilateral bargains occur simultaneously and without knowledge of the other bargains, but with the participants maintaining passive beliefs regarding the outcomes of those bargains. Note that renegotiation is ruled out here, which greatly reduces the computational complexity of the problem.

A central quantity of interest in the bargaining outcomes are the disagreement payoffs, which determine the outside option of each participant in the bargain (and therefore the strength of their bargaining position). As discussed above, the retailer’s disagreement payoff is the profit obtained excluding from the product set the manufacturer’s product that is being negotiated. This disagreement payoff reflects how much of the demand would be diverted to other products, how the retailer would adjust the prices, and what the margins of those products would then be. For the manufacturer, we assume that bargaining takes place separately for each brand, so the disagreement payoff is the profit made by the manufacturer (from that retailer) for the remaining brands (with the passive beliefs implying that the wholesale prices of those remaining products would not change).

Note that we formulate these bargains as brand specific, so that a given manufacturer bargains with the retailer separately for each brand within their portfolio, taking the other bargains as given.\textsuperscript{12} We allow separate bargains for the multiple market areas of a retailer in order to be consistent with the demand estimation as geographies vary in preferences and substitution patterns even within a retail banner. We note that our estimates reveal that

\textsuperscript{12}Note that an alternative would be for the manufacturer to bargain over all products in their portfolio at once. With our model set-up, this alternative would imply that the retailers would be forced to carry all or none of the brands in the manufacturer’s product set. In practice, we in fact observe retailers carrying subsets of the products and find the current assumption preferable. A similar argument (and assumption) is made in Grennan (2013), for similar reasons.
the few banners with multiple RMAs largely have similar bargaining power estimates that are not statistically significant above the expected rate for multiple hypothesis tests.

The Nash product for the bilateral bargaining game between manufacturer $f$ and retailer $r$ over brand $k$ is represented as a function of the wholesale price involved in the current bargain, $w_{r,kt}$, as well as the remaining wholesale prices, $w_{r,-kt}$, which are assumed known under the passive beliefs assumption. The relevant Nash product is given by

$$
(\Pi_r^{J_{rt}}(w_{r,kt},w_{r,-kt}) - \Pi_r^{J_{rt}-k}(w_{r,-kt}))^{\beta_{rkt}}(\Pi_f^{J_{rt}}(w_{r,kt},w_{r,-kt}) - \Pi_f^{J_{rt}-k}(w_{r,-kt}))^{1-\beta_{rkt}}
$$

where $\beta_{rkt} \in \{0, 1\}$ is the bargaining power of the retailer and $\Pi_m^h(w_{r,kt},w_{r,-kt})$ represents the profits for player $h \in \{\text{Retailer} = r, \text{Manufacturer} = f\}$ and for retailer product set $m$, which is specific to time period $t$. These retailer product sets are $J_{rt}$, denoting the full set of products available in retailer $r$, $J_{rt}-k$, denoting the same set less brand $k$. The corresponding manufacturer product sets are $f_{rt}$, denoting the set of products in retailer $r$ owned by firm $f$, which includes brand $k$, and $f_{rt}-k$, denoting the set of products in retailer $r$ owned by firm $f$, excluding brand $k$. Note that the profit functions $\Pi_m^h(\cdot)$ take as retail prices the optimal prices for the given product set given the wholesale prices. As a result, the retail prices differ under agreement and disagreement.

This bargaining model has at its extreme values of $\beta_{rkt}$ specific supply models (see appendix D for details). In particular, if $\beta_{rkt} = 1$ for all $k$ brands in a given retailer $r$ and period $t$, then the equilibrium behavior coincides with the monopolist retailer that sets wholesale prices equal to the manufacturers’ marginal costs, which is the fully-coordinated channel outcome and equivalent prices to the non-linear contracting case that solves the double-marginalization problem via including a fixed transfer fee in the contract between manufacturer and retailer. In contrast, if $\beta_{rkt} = 0$ for all $k$ brands, then manufacturers offer (linear) wholesale prices accounting for the competing manufacturers and the fact that the retailer sets prices after them. In this sense, the model nests some important supply-side
models that are commonly used in the empirical and theoretical literatures (see Iyer and Villas-Boas (2003) for a related discussion with a different utility function).\textsuperscript{13}

### 3.2.3 Manufacturer Profits

We now specify manufacturer profits including two modifications to the standard multi-product form to fit our empirical setting. As a starting point, we define manufacturer profits in retailer $r$ and period $t$ with retailer product set $m_{rt}$ and manufacturer product set $f_{rt} \subset m_{rt}$ are given by

$$
\Pi_{f}^{m_{rt}}(\cdot) = \sum_{j \in f_{rt}} (w_{rjt} - c_{rjt}) s_{rjt}^{m_{rt}} (p_{rjt}) M_{rt},
$$

where $c_{rjt}$ is the manufacturer’s marginal cost of production. This marginal cost is a function of variables $X_{c,rjt}$ and parameters $\theta_{c}$. In our setting, we use a linear cost function, $c_{rjt} = X_{c,rjt} \theta_{c}$. We allow costs to vary as a function of the relationship that each brand has with Keurig (either owned, licensed, partnered, or unlicensed, which serves as the excluded category), the brand’s vertical positioning in quality space (either a premium or value offering, which correspond to the highest priced and lowest priced product types), as well as commodity prices for the primary coffee beans used to produce at-home packaged coffee products (Colombian milds).\textsuperscript{14}

To this basic profit set up, we add two additional contractual details that are unique to our setting. First, in both the pre- and post-patent periods, Keurig had partnering and licensing relationships with many existing national brands. In the pre-patent period, this was the primary legal avenue by which these national brands could enter the market.\textsuperscript{15} In the post-patent period, any firm could enter and produce Single-cups on their own. In both cases, these contractual relationships influence the bargaining outcomes through the construction

\textsuperscript{13}Under the assumption of monopoly retailers, in our empirical analysis, we find that the data reject $\beta_{rkt} = 1$, offering some evidence that with our monopolist retailer set-up non-linear contracts are not consistent with the data. Relatedly, Iyer and Villas-Boas (2003) with a different model set-up from ours find that non-linear contracts are not optimal when bargaining is possible.

\textsuperscript{14}In fact, the different coffee bean commodity prices are highly correlated.

\textsuperscript{15}In fact, there are several small manufacturers who apparently worked around the patent, but obtained limited penetration (e.g., San Francisco Bay and Grove Square).
of the agreement and disagreement payoffs, which are detailed below. Second, some retailers contracted directly with Keurig to produce their private label products, while others utilized an independent third-party manufacturer. This also has important implications for the bargaining leverage.

To address the first issue, we develop a representation of these contractual relationships (partners and licensees) directly in the model. First, Keurig manufactures the Single-cup products for their partners; Keurig’s partners take the product to market themselves (i.e. negotiated directly with the retailers) and pay Keurig for accrued sales. Abstracting from the details of these unobserved contracts, we model these contracts as offering revenue sharing back to Keurig net of Keurig’s costs. Hence, while a given partner, say Starbucks, bargains with the retailers directly in our framework, they must pay a fraction of the wholesale price to Keurig. Correspondingly, when Keurig bargains for its wholesale prices (on the products it owns), it considers the side payment it receives from its partners when constructing its agreement and disagreement payoffs.

The modified profits for the partner brands are

\[ \Pi_{J_{rt}}^{J_{rt}}(\cdot) = \sum_{j \in J_{rt}} (w_{rjt} - c_{rjt}) s_{rjt}^{J_{rt}} (p_{rjt}) M_{rt}, \]

where \( \kappa \) is the net revenue sharing paid to Keurig per unit. Keurig’s profit is then,

\[ \Pi_{f_{rt}}^{J_{rt}}(\cdot) = \sum_{j \in J_{rt}} (w_{rjt} - c_{rjt}) s_{rjt}^{J_{rt}} (p_{rjt}) M_{rt} + \sum_{j \in J_{p,rt}} w_{rjt} \kappa s_{rjt}^{J_{rt}} (p_{rjt}) M_{rt}, \]

where \( J_{p,rt} \) is the set of partner brands in retailer \( r \) in period \( t \).

In addition to partners, Keurig also managed Single-cup products that held licensed brand names. These licensee brands (e.g., Eight O’Clock and Newman’s Own Organic) are manufactured and brought to market by Keurig. Keurig pays a licensing fee back to the licensor for each cup sold. In our model, these licensing fees appear as part of the costs (to Keurig) for licensing brands.
The second contractual issue noted above concerns the manufacturing relationships for the private label products (post-patent expiration). Note that private label brands are owned by the retailer rather than the manufacturer, so that the retailer can choose amongst multiple manufacturers for the purpose of producing the product. During our study time frame, the set of coffee pod manufacturers was relatively limited. We abstract to two manufacturers—Keurig and another player that has no national brands in the marketplace (a third party manufacturer). For retailers that have Keurig as the manufacturer, the bargain is between Keurig and the retailer, where that bargain internalizes all of the profits from Keurig’s other products (i.e., Keurig’s own, licensing, and partner brands). In contrast, the third party manufacturer has no other products that it internalizes (making its disagreement payoff zero should it fail to reach agreement with the retailer).

3.3 FOCs of the Supply-side Bargain Problems

The solution to the aforementioned supply-side bargains requires solving for the optimal wholesale prices that maximize the Nash product given in equation (5). To do so, we differentiate (5) with respect to $w_{r,kt}$. To simplify notation let $R_{fkt} = \Pi^f_{r} (w_{r,kt}, w_{r,-kt}) - \Pi^f_{r,k} (w_{r,-kt})$ and $F_{rkt} = \Pi^f_{f} (w_{r,kt}, w_{r,-kt}) - \Pi^f_{f,k} (w_{r,-kt})$.

This leads to the following expression:

$$\frac{dR_{fkt}}{dw_{r,kt}} F_{rkt} \beta_{rkt} + \frac{dF_{rkt}}{dw_{r,kt}} R_{fkt} (1 - \beta_{rkt}) = 0$$

Note that this first order condition is invariant to constant factors (as are Nash Products in general). The full calculations for the derivatives included in equation (9) are presented in Appendix E.

For our estimation, a different form of the FOC is useful. Dropping the $r$ and $t$ subscripts, we can rewrite the FOC as

$$\frac{\beta_k}{1 - \beta_k} = -\frac{dF_k}{dw_k} R_k \frac{dR_k}{dF_k}$$

25
3.4 Econometric Errors and Estimation Procedure

Given this model set-up, we rewrite the bargaining power parameters, $\beta_{rkt}$, as the ratio, $\phi_{rkt} = \frac{\beta_{rkt}}{1-\beta_{rkt}}$. Following Grennan (2013), we assume these to take the following form:

$$\phi_{rkt} = \phi_{rk} \epsilon_{rkt},$$

where $\epsilon_{rkt}$ is referred to as the bargaining residual and represents the econometric error in the model that we will interact with instruments during estimation.

To compute supply side parameter estimates, we use a non-linear generalized method of moments procedure, where the moments are $E(\log(\epsilon_{rkt}) * Z_{rkt})$. We note that the econometric error is calculated by substituting equation (10) into (11).

We separate the parameters into two groups—those corresponding to the marginal costs, $\theta_c$ and those corresponding to the bargaining power parameters, $\theta_\beta$. We note that equation (10) can be written as $\phi_{rkt}(\theta_c)$, and equation (11) can be written as $\epsilon_{rkt}(\phi_{rkt}(\theta_c), \theta_\beta)$. This naturally gives rise to a simplified computational approach that is reminiscent of the BLP inner-loop/outer-loop algorithm. Specifically, we use a non-linear optimization routine that optimizes over the parameters $\theta_c$. For any value of $\theta_c$, we can calculate the (linear) parameters $\theta_\beta$ that minimize the objective function analytically. In this way, we concentrate these parameters out, which allows us to include a large number of parameters in $\theta_\beta$. In our setting, $\theta_\beta$ includes one bargaining power parameter for each retailer-manufacturer brand pair, leading to over 500 such pairs.

To illustrate how the actual estimation works, we first rewrite equation (10) (dropping the subscripts for $f$, $r$, and $t$) as

$$\phi_k = -\frac{\frac{dF_k}{dw_k}(\theta_c) R_k}{F_k(\theta_c) \frac{dR_k}{dw_k}}.$$

Calculating the $\beta_k$ at each iteration of the optimizer would be computationally challenging.
However, given the structure of the problem, and leveraging the information set of the researcher, many of the computationally difficult quantities in equation (10) can be pre-calculated. For these calculations, we take as given the \( \hat{w} \) that we recover using the demand estimates, regular prices (90th quantile of quarterly prices), and the monopolist retailer pricing equations. As a result, of the quantities in equation (10), we can completely pre-calculate the \( R_{ft} \) and \( \frac{dR_{ft}}{d\hat{w}_{r,ft}} \). Further, the quantities \( F_{rt} \) and \( \frac{dF_{rt}}{d\hat{w}_{r,ft}} \) can be pre-calculated up to the cost parameters \( \theta_c \).

Note that these pre-calculations involve several steps. First, to calculate the quantities related to the retailer profits, we need to compute the disagreement payoffs. Because these payoffs involve counterfactual sets of products, we need to solve for the optimal prices with the reduced product set \( J_{rt} - k \). Since we have assumed a monopolist retailer, this problem has a unique solution and we uncover it by successive approximation (e.g., see Judd (1998)). Second, for each bargain, we need to simulate the shares for both the agreement and disagreement product sets, as well as their prices. Third, for each agreement payoff, we need to simulate the first and second derivatives of the shares. Finally, we need to compute the solution to the system of total derivatives of optimal price by wholesale prices based on equation (31) provided in Appendix E.

Once these pre-computations are complete, we proceed as follows:

1. Guess \( \theta_c \)

2. Calculate \( \phi_{rkt}(\theta_c) \)

3. Calculate \( \theta_\beta \) and \( log(\epsilon_{rkt}) \)

4. Calculate the GMM objective function

5. Use non-linear optimizer repeating steps 1 to 4
3.5 Identification and Instruments

We note that our model is in principle identified non-parametrically following the arguments in Berry and Haile (2014). The main distinction is that in our case, we have transformed the problem from having econometric errors in the costs to in the bargaining power parameters following Grennan (2013). As discussed above, demand is identified assuming exogenous prices (given our rich set of fixed effects) using the observed $X_{jrt}$ and $p_{jrt}$ and a set of instruments that identify the cross-product substitution patterns (i.e., the non-linear parameters) as suggested by Gandhi and Houde (2015). Given this demand system, then for any given model of supply, the cost function can be estimated assuming a cost index variable (coffee bean commodity prices, in our case). This identification argument presumes a cost shock as an econometric error, whereas we have transformed the errors into a bargaining power parameter residual. To our understanding, this does not affect the logic of the identification arguments. The bargaining power parameters are identified from variation in the demand conditions (e.g., we use functions of brand equities) holding fixed the cost index variable and equilibrium behaviors. In principle, this identification comes from holding the cost index fixed and having a constant cost function over variation in demand conditions, which, in essence, allows matching the observed equilibrium behaviors (i.e. prices) to the (same) best fitting supply model (i.e., bargaining power parameters). Of course, these arguments from Berry and Haile (2014) discuss non-parametric identification, whereas we impose a number of parametric assumptions (e.g., restricting the set of supply models to the class of bargaining models with monopolist retailers and with pairwise bargaining powers).

Practically, we need (at least) as many moments in our supply-side estimation as parameters. The moments for the bargaining parameters, $\theta_\beta$, come from a matrix of dummy-variables (i.e., the bargaining parameters are fixed effects). To estimate the cost function parameters, $\theta_c$, we need to address the fact that our bargaining power parameters are fixed effects that absorb the variation for each RMA-brand pair. Identifying the parameter on the coffee bean price parameter is trivially separated due to its time variation. However, a
subset of the cost variables are constant across time for subsets of brands (e.g., for premium brands, owned brands), so that if used directly as instruments, these cost variables would be perfectly collinear with the bargaining power parameters. To address this, we interact the cost variables with functions of the brand equities estimated in the demand side model, which reflect demand shifters and are time-varying. Specifically, we use the brand equities themselves, exponentiated brand equities, and the exponentiated brand equities divided by the sum of the exponentiated brand equities for the retailer. In principle, these instruments trace out the bargaining residuals to be independent of the demand conditions for relevant subsets of brands that should face the same costs. In other words, they enforce that the costs be the same in expectation as the demand conditions change, which closely follows the logic of the non-parametric identification of the supply interactions.

4 Empirical Results

In this section, we discuss results from the structural demand estimation and then the structural supply model.

4.1 Demand Model Estimates

Table 3 presents parameter estimates for the main parameters of interest, namely those relating to price and heterogeneous substitution effects. Recall that the model includes many additional controls, which are not reported here for brevity. The price coefficient is negative and significant and yields an average own price elasticity of -2.89. This own price elasticity is in line with other CPG categories, and is very similar to estimates using this data and simpler models that do not capture substitution between brands as well, including a log shares-log price regression (-3.06) and a model with no heterogeneity or ACV and installed base correction (-3.10). The model reveals substantial heterogeneity in tastes for three of the segments, namely single-cup, main and instant, whereas tastes for the premium segment are
relatively homogeneous. The model reveals significant, but modest heterogeneity in price sensitivity. This modest heterogeneity may be due to the presence of segment heterogeneity, since these segments exhibit a sharp degree of vertical differentiation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Std. Err.</th>
<th>Signif.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Price</td>
<td>-3.006</td>
<td>(0.001)</td>
<td>**</td>
</tr>
<tr>
<td>SD Price</td>
<td>0.109</td>
<td>(0.022)</td>
<td>**</td>
</tr>
<tr>
<td>SD Main</td>
<td>1.472</td>
<td>(0.020)</td>
<td>**</td>
</tr>
<tr>
<td>SD Premium</td>
<td>0.012</td>
<td>(0.099)</td>
<td></td>
</tr>
<tr>
<td>SD Instant</td>
<td>4.693</td>
<td>(0.028)</td>
<td>**</td>
</tr>
<tr>
<td>SD Single cup</td>
<td>1.218</td>
<td>(0.033)</td>
<td>**</td>
</tr>
</tbody>
</table>

Table 3: Estimates of Non-linear parameters

Figure 4 shows how the ‘brand intercepts’ compare between private label products and the leading national brand for each segment in each of the 72 RMAs. The figures contain the average (over all of the six-month time periods) brand intercept estimates for the corresponding brands in each RMA. To present these values on a single graph, each brand intercept is normalized by subtracting the mean of it’s segment’s leading national brand intercept (i.e., the leading national brand’s mean intercept is zero). Looking first at figure 4a, we can see that, while the median brand intercept of the leading national brand is greater than that of the private label, the distributions do overlap, particularly in the premium and single-cup segments. Figure 4b, which presents the same comparison, using differences instead of levels, illustrates that the overlap is not simply due to common market shifts, but rather due to some private labels achieving brand equity levels near those of the national brands. Although we cannot reveal identities of retailers, the relative ordering of the private brand intercepts are closely related to our understanding of the private brand programs of the retailers. This suggests that the products do share similar positions in vertical quality space (for at least some retailers), and as a result, compete for the same consumers. Moreover, it also demonstrates that there is heterogeneity (across retailers) in the degree to which they do so, providing a source of useful variation for the supply-side bargaining problem.
In addition to the variation in brand intercepts, our supply-side model builds on the substitution patterns captured in the demand model. In particular, our interest is in capturing aspects of the vertical segmentation (along price dimensions) within the Single-cup segment. To illustrate these substitution patterns, in Table 4 we present cross-price elasticities for a subset of brands and private labels for RMAs, which we label RMA 1-4. The pattern of cross-price elasticities is sensible with brands that are positioned vertically close to one another (e.g., Eight O’Clock and San Francisco Bay) having higher elasticities and brands positioned further apart (e.g., Eight O’Clock and Starbucks) having lower elasticities. Private labels have meaningful variation because of their price positions and brand equity (and the resultant market shares). For example, RMA 1 that is an upscale retailer has higher elasticity to Peet’s and lower to San Francisco Bay, whereas RMA 2 and 3 both have lower quality private labels, and so have lower elasticities to Peet’s. Finally, RMA 4 has a much higher private label share than most other private labels and as a result has much higher cross-elasticities. This is consistent with its strong private label program and positioning as a retailer.

We next examine whether the basic implications of an improved bargaining position are apparent in the wholesale prices we recover from the monopolist pricing assumption. Specifically, we consider for the same brands as presented in Table 1 (those available at least six months prior to the patent expiration) whether the wholesale prices decrease on average.

Figure 4: Private Label Brand Qualities
### Table 4: Cross-Price Elasticities for Select National and Private Label Brands. Rows are the brand that lowers price and columns the brand that is impacted. NA indicates the brand is not available in that retailer

<table>
<thead>
<tr>
<th>Brand</th>
<th>SF Bay</th>
<th>8 O Clock</th>
<th>Folger's</th>
<th>Keurig</th>
<th>Starbucks</th>
<th>Peet's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eight O Clock</td>
<td>0.081</td>
<td>-2.945</td>
<td>0.056</td>
<td>0.057</td>
<td>0.057</td>
<td>0.051</td>
</tr>
<tr>
<td>Folger's Gourmet</td>
<td>0.074</td>
<td>0.080</td>
<td>-2.895</td>
<td>0.101</td>
<td>0.109</td>
<td>0.074</td>
</tr>
<tr>
<td>Keurig</td>
<td>0.392</td>
<td>0.305</td>
<td>0.295</td>
<td>-2.722</td>
<td>0.306</td>
<td>0.286</td>
</tr>
<tr>
<td>Starbucks</td>
<td>0.065</td>
<td>0.069</td>
<td>0.089</td>
<td>0.087</td>
<td>-2.904</td>
<td>0.115</td>
</tr>
<tr>
<td>RMA 1 (upscale retailer)</td>
<td>0.094</td>
<td>0.141</td>
<td>0.141</td>
<td>0.141</td>
<td>0.140</td>
<td>0.173</td>
</tr>
<tr>
<td>RMA 2 (low-end retailer)</td>
<td>NA</td>
<td>0.114</td>
<td>0.109</td>
<td>0.109</td>
<td>0.108</td>
<td>0.083</td>
</tr>
<tr>
<td>RMA 3 (low-end retailer)</td>
<td>NA</td>
<td>0.122</td>
<td>0.133</td>
<td>0.135</td>
<td>0.134</td>
<td>0.094</td>
</tr>
<tr>
<td>RMA 4 (upscale, largest PL)</td>
<td>0.766</td>
<td>NA</td>
<td>0.764</td>
<td>0.765</td>
<td>0.762</td>
<td>0.762</td>
</tr>
</tbody>
</table>

in the four quarters after the patent expiration versus the four quarters before expiration.

Table 5 presents the analysis.

### Table 5: Percent and Level Changes in $\hat{w}$ for the year before versus after patent expiration for brands available at least 6 months before the patent expiration

<table>
<thead>
<tr>
<th>Brand</th>
<th>$% \Delta \hat{w}$</th>
<th>Est. Change</th>
<th>S.E.</th>
<th>t-stat</th>
<th>Obs. Pre</th>
<th>Obs. Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caribou Coffee</td>
<td>2.4%</td>
<td>0.011</td>
<td>0.005</td>
<td>2.047</td>
<td>206</td>
<td>214</td>
</tr>
<tr>
<td>Folger’s Gourmet</td>
<td>-4.0%</td>
<td>-0.016</td>
<td>0.003</td>
<td>-4.47</td>
<td>282</td>
<td>284</td>
</tr>
<tr>
<td>Keurig</td>
<td>-6.1%</td>
<td>-0.024</td>
<td>0.004</td>
<td>-6.06</td>
<td>275</td>
<td>280</td>
</tr>
<tr>
<td>Millstone</td>
<td>-3.9%</td>
<td>-0.155</td>
<td>0.004</td>
<td>-3.91</td>
<td>163</td>
<td>173</td>
</tr>
<tr>
<td>Newman’s Own Organics</td>
<td>3.3%</td>
<td>0.014</td>
<td>0.005</td>
<td>2.68</td>
<td>267</td>
<td>266</td>
</tr>
<tr>
<td>San Francisco Bay</td>
<td>-6.7%</td>
<td>-0.021</td>
<td>0.008</td>
<td>-2.59</td>
<td>46</td>
<td>77</td>
</tr>
<tr>
<td>Starbucks</td>
<td>-3.3%</td>
<td>-0.019</td>
<td>0.004</td>
<td>-4.34</td>
<td>200</td>
<td>279</td>
</tr>
</tbody>
</table>

The estimated differences are all negative except in two cases, Caribou Coffee and Newman’s Own Organics, the same brands that were found in Table 1 to increase the retail prices following the patent expiration, suggesting a shift upmarket. For the remaining brands, the decreases are between 3% and 7% with the second largest difference being for Keurig, the leading national brand. These results suggest that, consistent with past research (Meza and Sudhir, 2010), the improved bargaining leverage that the private label provides leads to lower wholesale prices. Our supply-side estimation and analysis further calibrates the magnitude
of this bargaining benefit in the context of the value of the private brand.

4.2 Supply-side Estimates

The supply-side estimation aims to recover two different sets of parameters, $\theta_c$, which contains the parameters of the cost function, and $\theta_\beta$, which contains the bargaining power parameters (bargaining ratios) for each retailer-brand pair. We first discuss the cost parameter estimates and then turn to the bargaining power parameters.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Std. Err.</th>
<th>Signif.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.097</td>
<td>0.005</td>
<td>*</td>
</tr>
<tr>
<td>Owned</td>
<td>0.035</td>
<td>0.004</td>
<td>*</td>
</tr>
<tr>
<td>Licensee</td>
<td>-0.025</td>
<td>0.001</td>
<td>*</td>
</tr>
<tr>
<td>Partner</td>
<td>0.009</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>Value Offering</td>
<td>0.004</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Premium Offering</td>
<td>0.068</td>
<td>0.011</td>
<td>*</td>
</tr>
<tr>
<td>Colombian Milds (/100)</td>
<td>0.015</td>
<td>0.001</td>
<td>*</td>
</tr>
</tbody>
</table>

Table 6: Estimates of Cost Parameters- *: p-value<.01

Table 6 presents the point estimates for the full set of cost parameters. The constant is 9.7 cents, suggesting a modest per-cup cost for single-cup coffee. We find that costs are influenced by the product’s relationship with Keurig and the commodity prices for Colombian Milds. The coffee beans increase costs approximately one and a half cents per 100 index points. Keurig’s owned brands are more expensive and licensee brands less expensive than the third party brands, whereas partner brands are no different in cost. Premium brands (e.g., Starbucks) are significantly more costly than all other brands, whereas value brands are not significantly different from mid-range brands in terms of cost. Overall, costs have meaningful variation, with the standard deviation being 3.3 cents, the interquartile range covering 4 cents, and the total range covering 12 cents. According to our cost function, coffee bean commodity costs make up on average 22% of the total manufacturing costs. We note, consistent with the more involved packaging and processing, this proportion of coffee bean
costs is much lower than the 50% proportion that is presumed in Noton and Elberg (2016) for traditional (e.g., large cans of) coffee. The modest level of response by manufacturers to costs is also consistent with the results of McShane et al. (2016), who found that pass-through by retailers is quite limited.

The bargaining power (ability) parameters include a large number of parameters (over 500), one for each retailer-brand pair in the single-cup segment. The interquartile range of the bargaining power is between 0.49 and 0.56, with a mean of 0.53 and a standard deviation of 0.07. For the level of uncertainty estimated from the supply side, all of the estimates are significantly different from both 0 and 1. Under the assumption of monopoly retailers, a value of $\beta_{rkt} = 1$ produces wholesale prices that are equivalent to those generated under optimal non-linear contracts in this monopolist retailer setting (i.e., wholesale prices are set to optimize the pairwise profits and a fixed transfer fee makes the retailer whole). Thus, we find that the data reject the non-linear contract outcome in our setting.\footnote{If retailers are, in fact, competitive, our model would be mis-specified so that our bargaining power estimate less than 1 could still reflect some form of non-linear contracts.}

Further, we reject that manufacturers are making take-it-or-leave-it offers to the retailers on linear wholesale prices, which would be represented as a bargaining power of 0.

Most notably, only 19% of the bargaining power estimates are statistically different from 0.5, which would imply equal weight to the retailer and manufacturer. Overall, these estimates suggest a large degree of homogeneity across both retailers and brands in how much bargaining power their behavior reflects. Further, the retailer and the brands appear to have similar levels of bargaining power, consistent with the original symmetric formulation proposed by Nash (1950). This seems quite reasonable in our context, as the asymmetric bargaining power itself is intended to reflect differences in patience, tolerance for risk and the negotiating skills of each party. It is hard to see why these should vary across the two sides in this setting, given that, in most cases, both parties are large, often publicly traded corporations with extensive experience in this market. In this case, large variation in the estimated bargaining parameters might suggest that our measures of bargaining leverage
were incomplete, and there were other sizable determinants of the bargaining outcomes left unaccounted for. This does not appear to be the case here.

We also examine whether the bargaining power parameters change after patent expiration. We estimate models where we allow the average $\beta_{rkt}$ to differ the year before the quarter of the patent expiration (quarter 12 when most private label entry occurs) and the year after. The mean difference for a model with common changes for all RMAs is -0.0025 (t-stat=-0.41). Further, allowing RMA-level differences in the change in bargaining power reveals only an average change of -0.004 and only 9 RMAs having more than a 0.02 shift. Even at 0.02 the change in percent profit increase is quite small. Thus, our findings suggest that most of the variation in outcomes with versus without the private label is due to changes in the bargaining leverage of the two parties rather than bargaining power (ability). This bargaining leverage is determined by the nature of demand and the brand equities (intercepts) for the products each retailer carries. In particular, for our investigation into the influence of private brand entry on bargaining outcomes, the private brand equity should be a central determinant. As noted in section 4.1, we find considerable variation in these brand intercepts across RMAs.

5 Counterfactual Experiments

In this section, we use counterfactual simulations to isolate and explore the impact of private label entry on bargaining outcomes. Recall that much was changing in the single-cup market over this period. The market for Single-cup coffee was continuing to expand with machine ownership, branded firms that were unaffiliated with Keurig were entering the market (post patent expiration), while new affiliated brands were entering in both periods, and most retailers were launching new private label products (just after patent expiration). To control for these factors and focus directly on the impact of private label entry, we consider a period

---

17The absolute change in percentage profit increase from adding the private label for a shift in bargaining power of -0.004 is 0.07% and the larger shift of 0.02 is -0.3%. These are very small changes compared to what is observed as the direct change in profit from adding the private label.
immediately after patent expiration and construct counterfactual outcomes for scenarios both with and without private label products.

In particular, for each RMA where a private label was actually introduced, we simulate a counterfactual outcome in which the private label product is removed from the market. We compute the equilibrium (bargained) wholesale prices, the corresponding optimal retail prices, and the resulting market shares. These counterfactual values will be denoted with a superscript $CF$. We then compare these to the “factual” bargained wholesale prices, optimal retailer prices and equilibrium market shares, computed with the private label in the market and denoted with a superscript $F$. Note that both constructs are simulations, with the latter corresponding to the “treatment” that actually occurred (i.e. private label entry) and the former corresponding to the counterfactual “control” condition. We present measures that reflect both the impact of the private label presence and the proportion that is due to bargaining benefits versus category expansion. We use percentage changes throughout to maintain a common scale. In all cases, we consider a setting in which all retailers choose to have their store brand manufactured by a third-party supplier, as this corresponds to a case in which retailers have the strongest bargaining leverage. For the following analyses, we consider all 65 RMAs having 338 RMA-period cases with a (factual) private label entry as compared to a (counterfactual) market without the private label.
5.1 Overall Impact of Private Label on Profits

We begin by quantifying the magnitude of the direct profits generated by the private label products themselves. In particular, we examine how large the profits from the private labels are in the single-cup segment, as a fraction of the total segment profits. These “direct profits” are calculated as \((p_{PL}^F - w_{PL}^F) \cdot sh_{PL}^F\), where \(p_{PL}^F\) is the retail price of the private label product, \(w_{PL}^F\) is the wholesale price the retailer pays to the manufacturer, and \(sh_{PL}^F\) is the equilibrium share of the PL product. To construct a percentage measure, we divide the direct profit by the retailer profit from the single-cup segment (without the private label in the market). The distribution of these percentages across retailers is displayed in figure 5a. Each observation underlying the density plot is an RMA-quarter. Note that retailers vary quite substantially in this measure of direct profit from the private label. The median retailer profits from the private label are 13% of the total segment profits without a private label. Some firms earn considerably more, with RMA 4 (which relies heavily on private label products) holding the extreme position of around 120%. This case shows both the importance of the private label and that some markets had an under-provision of product options prior to launching the private label. Overall, private labels constitute a sizable fraction of the retailer profits.

Of course, the net contribution of private label introduction will be less than what is captured in these direct profits, because this measure does not account for sales that are diverted from the retailer’s other products. The net profit gain from introducing the private label is presented in figure 5b, which shows the size of the percentage increase in overall single-cup segment profits attributable to the introduction of a private label product. This is calculated as the total retailer profit with the private label minus total retailer profit without the private label divided by the total retailer profit without the private label. Note that this calculation uses the same periods (i.e., not a before-after analysis). The lift is now meaningfully smaller, though still quite large in magnitude. The median lift in overall profits is 9.7%, with the extreme case being 93%. Private labels are a win for all retailers, but some benefit substantially more than others.
We now consider how the profit gain is achieved. The private label can increase profit by increasing the total category demand through the lower-priced product offering that draws consumers away from the outside good and also can command a higher percentage margin. Alternatively, the profit gain could come from increasing the margins of the existing products without harming their sales too much.

Turning first to the total category expansion, we calculate the percentage increase in single-cup sales (out of total market size) with the private label versus without it. Figure 6a indicates that the category expansion effect is quite large, increasing demand by an average of 15%. This suggests there was pent-up demand for lower priced single-cup products and that the private label satisfies a large segment of this unmet demand. Further, we also find that (even) with the private label in the market, the average margin for the private labels (52%) is higher than that of the leading national brand (47%). Note, however, that because the category expansion arises largely due to the lower priced private label product, it is quite possible that the average cents margin on product sold might actually fall.

We next examine how the margins on the national brands differ with versus without the private label. In particular, we consider the margins the retailers are able to negotiate with the national brands following the introduction of the private label product. Figure 6b
presents the density for the margin increase (on national brands) when the private label is in the market versus the counterfactual outcome when the private label is absent. We report this as a percentage of the counterfactual margin without the private label. While the increase is relatively modest on average (2%) and most retailers see an increase of under 3%, again there is substantial heterogeneity, with some retailers achieving gains of 5% or higher, some substantially less. This margin increase is part of the indirect benefit of private label entry on the negotiations for the non-private label products.

5.3 Profit Decomposition and the Bargaining Benefit

We now evaluate the amount of profits arising from the bargaining benefit related to the margin gain and category expansion. We first consider the category expansion. Category expansion is the combination of an increase in shares due to the private label entering (presumably at a lower price than the national brands) and a loss of shares (stolen) from the national brands. Profits from category expansion are defined as

\[
\Pi_{CE} = (p_{PL}^F - w_{PL}^F) s_{PL}^F + \sum_{J \neq PL} (p_j^F - w_j^F) (s_j^F - s_j^{CF})
\]  

The first term in this sum is the private label direct profits and the second term is the (loss) in profits due to competitive stealing. To see that the second term is actually negative, note that the shares of national brands with the private-label should on average be lower than those without the private label. Figure 7 presents the profits from category expansion as well as the profits lost due to competitive stealing.

Figure 7a indicates that category expansion accounts for a large increase in the profits relative to the profits attained without the private label. The average is 11%, though there is a large spread. The largest increase (RMA 4) indicates a 69% increase in segment profits due to category expansion. Interestingly, in figure 7b, the lost profits are a meaningful proportion of the counterfactual profits without private label, suggesting that of the direct private label
profits we noted earlier, a significant proportion come from competitive stealing. Most cases fall between an 8% and a 3% loss with the average being a 6.6% loss. This suggests that the private label provides significant benefit that far exceeds the loss due to competitive stealing. In particular, this suggests that there was pent-up demand that the private label meets.

Our final set of computations aim to calibrate how large the bargaining benefit is of private label entry. In particular, the bargaining benefit is measured as

\[
\sum_{J_{t=1}^t - PL} \left( (p^F_j - w^F_j) - (p^{CF}_j - w^{CF}_j) \right) s^{CF}_j
\]  

(14)

Figure 8a presents the bargaining benefit as a percentage of total counterfactual profits. We note that the bargaining benefit is quite heterogenous. Most retailers derivate a benefit (due to better margins on branded products) that is on the order of 2.4% of single-cup segment profits, some firms do substantially better than this (due to the strong positioning of their private label in the marketplace). Finally, figure 8b reveals the magnitude of the bargaining benefit as a percentage of the overall profit increase due to the private label (i.e., profit with private label minus profit without private label). We find that the bargaining benefit is quite large, amounting to 18.5% of the overall lift in profits on average. Again, there is significant heterogeneity around the mean.
To provide an initial explanation for this variation around the mean, we consider how the bargaining benefit relates to the private label brand equity in the premium coffee segment. First, we calculate the brand equity of the private label in the premium segment minus that of Starbucks premium coffee, the relevant national brand. This provides an outside good free estimate of the private label brand equity in that retailer. Second, we exponentiate this relative brand equity to reflect the manner it enters the utility of consumers. Third, we standardize both quantities to better understand the size of the relationship in a scale-free manner. We then regress the exponentiated private label relative brand equity on the percent profit increase, the percent category expansion, the percent bargaining benefit, and the percent bargaining benefit of the total benefit (bargaining benefit plus category expansion). In each case, we find significant relationships with all being positive except the last. The magnitude of effects are 0.64, 0.63, 0.62, and -0.16, respectively. This suggests that the private label brand equity in adjacent segments explains a large and meaningful proportion of the benefit of private label presence, including both the category expansion and bargaining benefits. Interestingly, the proportion of the total profit increase that is due to the bargaining benefit decreases as brand equity increases. Although this relationship is relatively weak, this relationship suggests that the retailers with the best private branding programs tend to both expand the category and reap greater returns from national brands, but grow the business (slightly) more than squeezing their suppliers.

(a) As Percentage of Profit without PL  
(b) As Percentage of Profit Increase

Figure 8: Bargaining Benefits
Table 7: Regressions of Standardized Relative Brand Equity on Counterfactual Outcomes
- *: p-value < .01

<table>
<thead>
<tr>
<th>Counterfactual Outcome</th>
<th>Estimate</th>
<th>(Std. Err.)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Profit Increase</td>
<td>0.638*</td>
<td>(0.042)</td>
<td>0.407</td>
</tr>
<tr>
<td>% Category Expansion</td>
<td>0.634*</td>
<td>(0.042)</td>
<td>0.402</td>
</tr>
<tr>
<td>% Bargain Benefit</td>
<td>0.621*</td>
<td>(0.043)</td>
<td>0.386</td>
</tr>
<tr>
<td>% of Profit Increase from Bargaining</td>
<td>-0.157*</td>
<td>(0.054)</td>
<td>0.025</td>
</tr>
</tbody>
</table>

6 Conclusion

We examine the role of private labels in determining bargaining outcomes in the brew-at-home coffee category. We exploit a natural experiment in which private label entry was prevented by patent protection, to reveal how firms behave in the absence of private label competition and how their strategies adapt when entry occurs. We find that bargaining outcomes are driven primarily by bargaining leverage, while bargaining ability is relatively symmetric. Moreover, the impact of bargaining leverage is substantial: bargaining benefits account for roughly 20% of the overall benefit of private label introduction, which is itself on the order of 10% of pre-introduction profits.

Note that we have abstracted away from competition between rival retailers. Extending the analysis to include these effects is the subject of future research. Future work could also consider how lump-sum transfers (e.g. slotting allowances and other non-linear contracts) such as those considered in the theory work by Shaffer (2001) or alternative vertical arrangements (e.g. non-cooperative vertical games) would change the analysis.
References


A Details of Sample Construction

In this appendix, we discuss details of the sample selection and segment definitions used in our empirical analyses.

We begin by discussing details about how we categorize the product segments. The premium segment includes all whole bean coffee products and ground coffee brands that mainly sold in premium packages such as bag or foil pouch. We then categorize the ground coffee brands that are mainly sold in can or canister and are cheap (i.e., below $0.15 per serving to be defined below) as the mainstream segment. For products in other package types such as brick and box, we categorize them into the premium segment if their price per pound is in the range of the whole bean and bagged ground coffee, or the mainstream otherwise. For the instant segment, we use the IRI subcategory definition to identify instant, namely, soluble coffee products. Finally, for the single cup segment, we follow the IRI subcategory definition to identify single cup products. Furthermore, for the purpose of our study, we exclude single cup coffee products that are not compatible with the Keurig Single-cup system, which we identify through product formats (for example, T Disc and Vue are not compatible with the Keurig Single-cup brewer). Note that in 2008, Keurig Single-cup compatible products were 87% of the whole single cup segment in revenue. This portion increases in subsequent years, reaching 99% in 2014.

In order to construct prices that are comparable across segments, we define the equivalent serving size for each segment, namely, the weight of coffee products to make a standard cup of coffee (6 fluid oz.). For the mainstream and premium products, we apply a universal serving size 0.4 oz. per cup of coffee. For mix or flavored instant products, we follow the manufacturer’s recommendation for each brand to define the equivalent serving size; for regular instant product, we apply a universal serving size 2/15 oz. For single cup products, one pod is equivalent to one serving.

For each segment, we keep the leading national brands based on their total dollar sales in the sample. Table A.1 reports all the brands we include in our sample. Note that we keep more brands in the single cup segment than other segments, since that is the focal segment of this study. For each RMA, we drop segment-brands that only appear once in the entire sample period to avoid singularities when estimating demand. These single period cases are rare and unusual. The remaining sample captures 93.7% of total coffee sales. Finally, we select the RMA-week-segment-brand observations that have a reasonable level of distribution to better capture representative patterns of demand. First, we drop observations with less than 10% ACV distribution. We found these observations to be more likely to be error-prone and they had little impact on the total sales. Second, we drop any segment-brand in an RMA if its median ACV distribution fails to ever achieve 50% (medians are calculated after the censoring). These segment-brands represent relatively small share cases and, with this selection criteria, we retain 87.1% of the remaining observations and 98.3% of remaining dollar sales.

We also note that we group the Keurig owned Single-cup brands, including Keurig’s leading house brand Green Mountain and other smaller brands. In general, these brands’ prices and price promotion schedules are closely linked, lending support to the aggregation we do. We studied a sample of fourteen RMAs in detail to evaluate whether the pricing of these brands were indeed closely linked. We considered the brands that make up 95% of
the Keurig Owned brand sales and that were in the sample at least 52 weeks. We found four such brands. The bulk of the owned sales is actually from a single brand with the rest relatively spread out. We also found that these four brands have TPR promotion schedules that are closely linked with their average prices having sharp dips at the same time and prices are correlated within RMA.

The above describes the sample construction for the demand-side estimation. The supply-side has several additional considerations. First, we aggregate our data to the quarterly level (13 week periods). To do so, we construct a measure of regular prices as the 90th quantile of the weekly price distribution in the quarter and construct averages for the other quantities of interest (e.g., ACV, share). Second, in the supply side estimation, we include only the single-cup products in the bargaining set and don’t consider the main, premium, or instant coffee products. This simplification reduces the computational burden of the problem, focuses on our main interest, and is justifiable because the substitution between single-cup and the other segments is relatively small. Third, we consider only the period from 2010 onward (ending after the first quarter of 2014) to use data more proximate in time to the private label entries for estimating the cost function.

Fourth, we use the sample selection rules discussed above and add some additional ones resulting from some measurement concerns due to aggregating to the quarter. We include in the profit calculations only brands that are observed at least 6 of the 13 weeks and include as bargaining observations to calculate the moments only those brands that have at least 10 weeks of data in the given quarter. This largely eliminates cases when a brand first enters the market or just before it exits. These cases often have lower ACV, have unusual promotional activity, and our measures for the quarter tend to be poor approximations to rapidly changing shares. In addition to this rule, we identified three other observations where our quarterly measures appeared to have substantial error, and dropped those cases as well. After all of these additional sample adjustments, we retain 6,978 observations or 92% of the original bargaining observations (i.e., quarter RMA-brand-retailer pairs). These bargaining observations are spread across the 72 RMAs and 17 quarters. We note that most of the bargaining pair observations have 3 or more brands in the market (86%) and 10 or less (88%).

B Installed Base Imputation

We use the single cup category penetration rate (percent households ever purchased in a year) as a proxy for the installed base of Keurig brewers among retailer shoppers. The point-of-sale data starts from 2008 yet the penetration rate data are only available starting from 2011.\footnote{Some RMA-years had too few buyers in the IRI panel data to make a projection to the shopper population for that specific RMA-year of the percentage of shoppers that buy any single-cup products. We use the fitted values of a multiple regression to impute the missing values, where the regression includes independent variables the (raw, not projected) observed number of buyers divided by the raw number of shoppers, the share of the Single-cup sales out of coffee sales, total Single-cup and total coffee sales, average dollar sales weighted ACV for Single-cup products, the average, minimum, and maximum number of Single-cup brands (and polynomials of these), and a cubic function of the year dummies interacted with the coffee penetration rate.} In order to obtain installed base prior to 2011, we fit a bass diffusion curve...
Table A.1

<table>
<thead>
<tr>
<th>Segment</th>
<th>No. brands in segment</th>
<th>Included brands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>8</td>
<td>CAFE BUSTELO, CHOCK FULL O NUTS, DON FRANCISCOS, FOLGERS, MAXWELL HOUSE, MELITTA, PRIVATE LABEL, YUBAN</td>
</tr>
<tr>
<td>Premium</td>
<td>18</td>
<td>CARIBOU COFFEE, COMMUNITY, DON FRANCISCOS FAMILY RESERVE, DUNKIN DONUTS, EIGHT O CLOCK, FOLGERS GOURMET, GEVALIA, GREEN MOUNTAIN, ILLY, MELITTA, MILLSTONE, NEW ENGLAND, NEWMANS OWN ORGANICS, PEETS, PRIVATE LABEL, SEATTLES BEST, STARBUCKS, TULLYS COFFEE</td>
</tr>
<tr>
<td>Instant</td>
<td>7</td>
<td>FOLGERS, GENERAL FOODS INTERNATIONAL, HILLS BROTHERS CAPPUCCINO, MAXWELL HOUSE, MAXWELL HOUSE MIX, NESCAFE, PRIVATE LABEL</td>
</tr>
<tr>
<td>Single Cup</td>
<td>26</td>
<td>CAMERONS, CARIBOU COFFEE, COMMUNITY, DON FRANCISCOS FAMILY RESERVE, EIGHT O CLOCK, FOLGERS GOURMET, GEVALIA, GEVALIA MIX, GROVE SQUARE, HILLS BROS, KEURIG, MARTINSON, MAXWELL HOUSE, MELITTA, MILLSTONE, NEW ENGLAND, NEWMANS OWN ORGANICS, PANERA BREAD, PEETS, PRIVATE LABEL, SAN FRANCISCO BAY, SEATTLES BEST, STARBUCKS, THE ORGANIC COFFEE CO, YUBAN GOLD</td>
</tr>
</tbody>
</table>
for each individual RMA with the initial year being 2004 when the first Keurig at-home single cup brewer was introduced. The bass diffusion process is described by the following equation. We estimate the bass diffusion parameters for each RMA using nonlinear least squares.

\[
IB_{jt} = m_j \times \frac{1 - \exp \left( -(p_j + q_j) \times (t - t_0) \right)}{1 + \frac{q_j}{p_j} \exp \left( -(p_j + q_j) \times (t - t_0) \right)}
\]

(15)

where \(j\) represents retailers, \(t\) represents year, and \(t_0 = 2004\). We then use the fitted value as the end of year installed base throughout the sample (i.e., not only to make up for the missing penetration rates but also the observed values) to smooth out noises from the penetration rate data. In addition, recognizing that the penetration rate likely captures a subset of the actual Keurig owners among the retailer shoppers (namely, leaving out those who own a Keurig but never buy single cup from that retailer), we increase the fitted value by three percentage points.\(^{19}\) Finally, we interpolate the end of year installed base to end of quarter ones by assigning 13%, 14%, 25%, and 48% increment to each calendar quarter respectively based on Keurig’s quarterly national sales in their 2013 10Q report. Weekly installed base levels are interpolated linearly from these quarterly levels.

C Keurig Brewer Prices

Figure C.1 presents brewer prices across retailers aggregated to the model level with each line representing one model.\(^{20}\) The brewer prices seem largely unaffected by the patent expiration with only two potential exceptions. The first, one of the mid-end models appears to have a permanent price drop following the patent expiration. This price drop is actually arising from a single retailer and not a systematic effect. The other case is a lower-end model that experiences a temporary price promotion shortly after the patent expiration. However, this price drop appears to be consistent in size with later price promotions. Examination of the individual SKUs presents similar findings. Hence, brewer prices appear unlikely to influence the analysis and results presented in this paper.

D Corner cases of the bargaining model

The bargaining power parameter in the Nash bargaining model indexes a range of potential supply arrangements. Two corner cases with \(\beta = 1\) and \(\beta = 0\) correspond to two special cases of retailer-manufacturer games.

The first case, when \(\beta = 1\), the retailer has all of the power in the bargaining process. With this bargaining power, the objective function for the bargaining stage becomes \((\Pi^{Jt}_{r} (w_{r,kt}, w_{r,-kt}) - \Pi^{Jt}_{r} (w_{r,-kt}))\). In other words, the manufacturer’s profitability is ignored in the determination of the wholesale price. Since the retailer’s profits are decreasing in the wholesale price, the wholesale prices would be set as low as possible, i.e., at the.

\(^{19}\)We determined the 3% value by analyzing the category share out of total coffee to infer a lower bound of the installed base.

\(^{20}\)The model names are hidden for confidentiality.
manufacturer’s participation constraint. If this participation constraint for the manufacturer requires non-negative profits, then wholesale prices would be set to the manufacturer’s marginal costs. This arrangement produces channel optimal profits because it eliminates the double-marginalization problem. Interestingly, this special case produces wholesale and retail prices that correspond to those from a non-linear contracts setting where the manufacturer makes take-it-or-leave-it offers of a linear wholesale price (at the marginal cost) and fixed fees from the retailer to the manufacturer to make the manufacturer whole. Our current model design cannot identify such fixed fees, but we note that our estimates of bargaining power are all significantly different from 1, suggesting under the monopolist retailer assumption we do not find support wholesale prices that would be consistent with the non-linear contracts setting described above.

The second case is when $\beta = 0$, when the manufacturer has all of the bargaining power. The objective function becomes $(\Pi_{jt}^{\text{fr}}(w_{rt}, w_{r,-kt}) - \Pi_{f}^{I_{kt}}(w_{r,-kt}))$. As a result, wholesale prices are set to maximize the manufacturer’s profits anticipating the retailer will set retail prices optimally. Since our manufacturers are competing with one another, this is consistent with a setting where the competitive manufacturers make linear wholesale price take-it-or-leave-it offers to the retailers. In this case, the prices will not be optimal for channel profits due to the double-marginalization problem. In some sense, then the bargaining increases channel profits and also the share that the retailer obtains as the $\beta$ increases.

## E Additional Calculations

For simplicity, we drop the $krt$ subscripts and letting $w^f$ and $c_i^f$ represent the vector of wholesale prices and marginal costs for brands owned by manufacturer $f$. To accommodate
the partner revenue sharing we develop the notation $\mu_{1j}$ and $\mu_{2j}$. We let $\mu_{1j}$ to be $1 - \kappa$ for the profits for partner brands, $\kappa$ for Keurig profits, and 1 otherwise. We let $\mu_{2j}$ to be 0 for Keurig profits and 1 otherwise. With this notation, the manufacturer profits in matrix notation are

$$
\sum_{j \in f_{rt}} (w_{j\mu_{1j}} - c_{j\mu_{2j}}) s_{jrt}^f (p)
$$

We denote the vector of $\mu_{1j}$ containing all terms relevant for manufacturer $f$ to be $\mu_{1f}$ and likewise for $\mu_{2f}$. The derivatives in terms of the wholesale price are then

$$
\frac{dF}{dw_k} = \sum_{j \in f} (w_{j\mu_{1j}} - c_{j\mu_{2j}}) \frac{ds_j}{dw_k} + s_k\mu_{1k}
$$

(17)

$$
\frac{dR}{dw_k} = \sum_{j \in J} \left( (p_j - w_j) \frac{ds_j}{dw_k} + \frac{dp_j}{dw_k} s_j \right) - s_k
$$

(19)

$$
\frac{dR}{dw_k} = \left( (p - w) \frac{ds}{dw_k} + \left( \frac{dp}{dw_k} \right)' s \right) - s_k.
$$

(20)

We now consider the calculation of the two total derivatives contained in these expressions, $\frac{ds_j}{dw_k}$ and $\frac{dp_i}{dw_k}$. For the former, note that $s_j = s_j(p_1(w_k), \ldots, p_J(w_k))$, so that $\frac{ds_i}{dw_k} = \sum_{i=1}^J \frac{\partial s_i}{\partial p_i} \frac{dp_i}{dw_k}$. In matrix notation, this is $-\Omega \frac{dp}{dw_k}$, where the $l$th row and $j$th column of $\Omega$ is

$$
-\frac{ds_j}{dp_l} = \begin{cases}
  1 & \text{if } j = 1 \\
  -\int_{\theta_i} \frac{s_{ii}(1-s_{ii})^\alpha_i}{p_j p_i} d\theta_i & \text{if } j \neq 1
\end{cases}
$$

(22)

where $\theta_i$ represents the set of all individual level variables characterizing heterogeneity, i.e., including tastes, price sensitivity, availability, and machine ownership.

Combining the columns for the derivatives of $F$ and $R$ in terms of $w$ and expressing these derivatives more fully, we have

$$
\frac{dF}{dw} = \left( w^f \cdot \mu_1^f - c^f \cdot \mu_2^f \right) \frac{dp}{dp} \frac{dp}{dw} + s^f \cdot \mu_1^f
$$

(23)

$$
\frac{dR}{dw} = \left( (p - w) \frac{dp}{dp} \frac{dp}{dw} \right)' + \left( \frac{dp}{dw} - I \right)' s.
$$

(24)

For the total price derivative, we must account for the fact that price is the optimal price set by the retailer which satisfies the equation $p = w + \Omega^{-1} s(p)$. To calculate the $\frac{dp}{dw_k}$, we
take the total derivative of the pricing equations. This total derivative is

\[
dp_k = \frac{dw_k}{dw_k} + \Omega^{-1} \frac{ds}{dw_k} s + \Omega^{-1} \frac{ds}{dp} \frac{dp}{dw_k}
\]

(25)

\[
dp_k = \frac{dw_k}{dw_k} + \sum_{l=1}^J \left( \frac{d\Omega^{-1}}{dp_l} \frac{dp_l}{dw_k} \right) s + \Omega^{-1} \sum_{l=1}^J \frac{\partial s}{\partial p_l} \frac{dp_l}{dw_k}
\]

(26)

\[
dp_k = \frac{dw_k}{dw_k} - \Omega^{-1} \sum_{l=1}^J \left( \frac{d\Omega}{dp_l} \frac{dp_l}{dw_k} \right) \Omega^{-1} s + \Omega^{-1} \sum_{l=1}^J \frac{\partial s}{\partial p_l} \frac{dp_l}{dw_k}
\]

(27)

\[
dp_k = \frac{dw_k}{dw_k} + \sum_{l=1}^J \left( \Omega^{-1} \frac{\partial s}{\partial p_l} - \Omega^{-1} \frac{d\Omega}{dp_l} \Omega^{-1} s \right) \frac{dp_l}{dw_k}
\]

(28)

Further simplifying this expression requires shifting to matrix notation for the quantity in parentheses in the last line above. Specifically, let the \(l\)th column of \(G\), be \(G_l = \Omega^{-1} \left( \frac{\partial s}{\partial p_l} - \frac{\partial s}{\partial p_l} \Omega^{-1} s \right)\). Then we can simplify notation to

\[
\frac{dp_k}{dw_k} = \frac{dw_k}{dw_k} + G \frac{dp_k}{dw_k},
\]

(29)

which if \(I - G\) is positive definite, then the total derivatives are

\[
\frac{dp_k}{dw_k} = (I - G)^{-1} \frac{dw_k}{dw_k}
\]

(30)

We combine the columns of the derivatives in terms of \(w_k\) and note that \(\frac{dw_k}{dw_k} equals 1\) for the \(k\)th element and 0 otherwise, so that the matrix of derivatives of the wholesale price in terms of the wholesale price is just the identity matrix. The resulting matrix of price derivatives in terms of wholesale prices is

\[
\frac{dp}{dw} = (I - G)^{-1}
\]

(31)

Finally, letting \(\Omega_{jh}\) be the element in the \(j\)th row and \(h\)th column, the \(\partial \Omega / \partial p_l\) derivatives are defined by

\[
\frac{\partial \Omega_{jh}}{\partial p_l} = \begin{cases}
    \text{if } l = h = j & -\int_i s_{ij}(1-s_{ij})\alpha_i((1-2s_{ij})\alpha_i-1) d\theta_i \\
    \text{if } l = j \neq h & \int_i s_{ij} s_{ij}(1-2s_{ij})\alpha_i d\theta_i \\
    \text{if } l = h \neq j & \int_i s_{ij} s_{ij}(1-2s_{ij})\alpha_i^2 d\theta_i \\
    \text{if } l \neq h = j & \int_i s_{ij} s_{ij}(1-2s_{ij})\alpha_i^2 d\theta_i \\
    \text{if } l \neq h \neq j & -2 \int_i s_{ij} s_{ij} s_{ij} s_{ij} \alpha_i^2 d\theta_i 
\end{cases}
\]

(32)
E.1 Standard Errors

The standard errors are calculated assuming homoskedastic errors under the non-linear 2SLS (Camerer and Trivedi 2005). The formula is

\[ \hat{V}(\hat{\beta}) = s^2 \left( \hat{D}'Z'(Z'Z)^{-1}Z'\hat{D} \right)^{-1}, \]  

(33)

where \( s^2 \) is the consistent estimate of the variance of the (logged) residuals and \( \hat{D} \) is the matrix derivatives of the (logged) residual in terms of the parameters. These derivatives are characterized by

\[ \frac{\partial (\phi_{rkt}(\theta_c) - \phi_{rk})}{\partial \phi_{rk}} = -1_{rk} \]  

(34)

\[ \frac{\partial (\phi_{rkt}(\theta_c) - \phi_{rk})}{\partial \theta_c} = -\frac{R_k}{\frac{\partial R_k}{\partial w_k} F_k} \left( \frac{\partial^2 F_k}{\partial \theta_c} - \frac{\partial F_k}{\partial w_k} \frac{\partial F_k}{\partial \theta_c} F_k \right) \]  

(35)

\[ \frac{\partial F_k}{\partial \theta_c} = X'_{c,f} \left( s_{f-k} - s_f \right) \cdot \mu^2 \]  

(36)

\[ \frac{\partial F_k}{\partial w_k} \frac{\partial \theta_c}{\partial \theta_c} = -X'_{c,f} \frac{ds_f}{dw_k} \cdot \mu^2, \]  

(37)

and where the remaining quantities are defined in the main text.

We note that whereas for obtaining the point estimates we concentrate out the parameters \( \phi_{rk} \) for the standard errors, we reincorporate in the instrument matrix the appropriate dummy variables for the bargaining power parameters. This allows estimation of the standard errors for those parameters as well.

E.2 Counterfactuals and simulating data

The counterfactuals rely on our ability to simulate data from the bargaining problem. We do so with knowledge of the parameters of the demand and supply side model as well as knowledge of the predetermined variables in the model. We note that in the results in the paper we use the estimated bargaining parameters (i.e., ignore the bargaining residuals), but that including the bargaining residuals does not substantially change the outcomes, it only adds more variation.

Our main task to run the counterfactuals is to calculate the \( w \) and \( p \) vectors for each period and market. The optimal \( p \) vector can be calculated for any given \( w \) by successive approximation on the price first order conditions, \( p = w + \Omega (p)^{-1} s (p) \). With the monopolist retailer assumptions, these conditions represent a unique equilibrium.

Our counterfactuals are calculated by proposing the set of products in the bargaining setting and then guessing at the wholesale price, \( w \), and solving for \( p \). With these quantities in hand, we use the first order conditions of the bargaining problem to solve for the \( w \) via successive approximation (we have also done this with non-linear solvers). The successive approximation takes the following form:
\[ w^{h+1} = c \frac{\mu_2}{\mu_1} - \frac{s(w^h) + V(w^h)}{\Psi(w^h) \cdot \mu_1}, \] (38)

where \( h \) indexes the iterations, \( w \), \( c \), and \( s \) are the respective \( J \times 1 \) vectors of wholesale prices, costs, and shares, \( V \) is a \( J \times 1 \) vector that represents the internalization of the profit impact of this bargain on other products the manufacturer controls, and \( \Psi \) is \( J \times 1 \) vector related to a ”mark-up” term. The \( j \)th element of \( \Psi \) is

\[ \Psi(j) = \frac{ds_j}{dw_j} + \rho_j s_j, \] (39)

where \( \rho_j \) is defined by

\[ \rho_j = \beta_j \frac{dR_j}{dw_j}, \] (40)

and the diagonal matrix with \( \rho_j \) on the \((j, j)\)th element is \( \rho \). \( V \) is defined by

\[ V = \left( M \ast (1 - I) \ast \left( \frac{ds}{dw} + \rho \tilde{s} \right) \right) \cdot (w \cdot \mu_1 - c \cdot \mu_2), \] (41)

where \( \tilde{s} \) is a \( J \times J \) matrix with the \((j, k)\) element containing the difference between the share of product \( k \) with all products versus the share without product \( j \), where the retail prices are set optimally given the wholesale price and the set of products in the market. The matrices \( M \ast (1 - I) \) are element-wise multiplied and represent the ownership structure with the diagonal elements containing zeros.

The derivation of equation (38) relies on separating the \( j \)th (bargained) product from \( dF_j/dw_j \) and \( F_j \), moving that to the lefthand side and separating \( w_j \) from the other terms.

We note that we have no proof that the bargaining problem has a unique equilibrium. We try multiple starting points in order to evaluate whether multiple equilibria are obtained.